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Summary 

At the start of the 21st century, several federal agencies and organizations began to recognize the 
potential of improving chemical risk assessment by using the scientific and technological advances in bi
ology and other related fields that were allowing the biological basis of disease to be better understood. 
Substantial increases in computational power and advances in analytical and integrative methods made 
incorporating the emerging evidence into risk assessment a possibility. Strategies were developed to use 
the advances to improve assessment of the effects of chemicals or other stressors that could potentially 
affect human health. Building on those efforts, the National Research Council (NRC) report Toxicity Test
ing in the 21st Century: A Vision and a Strateg/ envisioned a future in which toxicology relied primarily 
on high-throughput in vitro assays and computational models based on human biology to evaluate poten
tial adverse effects of chemical exposures. Similarly, the NRC report Exposure Science in the 21st Centu
ry: A Vision and a Strateg/ articulated a long-term vision for exposure science motivated by the advanc
es in analytical methods, sensor systems, molecular technologies, informatics, and computational 
modeling. That vision was to inspire a transformational change in the breadth and depth of exposure as
sessment that would improve integration with and responsiveness to toxicology and epidemiology. 

Since release of those two reports, government collaborations have been formed, large-scale US and 
international programs have been initiated, and data are being generated from government, industry, and 
academic laboratories at an overwhelming pace. It is anticipated that the data being generated will inform 
risk assessment and support decision-making to improve public health and the environment. In the mean
time, questions have arisen as to whether or how the data now being generated can be used to improve 
risk-based decision-making. Because several federal agencies recognize the potential value of such data in 
helping them to address their many challenging tasks, the US Environmental Protection Agency (EPA), 
US Food and Drug Administration (FDA), National Institute of Environmental Health Sciences (NIEHS), 
and National Center for Advancing Translational Sciences (NCATS) asked the National Academies of 
Sciences, Engineering, and Medicine to recommend the best ways to incorporate the emerging science 
into risk-based evaluations.3 As a result of the request, the National Academies convened the Committee 
on Incorporating 21st Century Science into Risk-Based Evaluations, which prepared this report. 

SCIENTIFIC ADVANCES 

To approach its task, the committee assessed scientific and technological advances in exposure sci
ence and toxicology that could be integrated into and used to improve any of the four elements of risk 
assessment-hazard identification, dose-response assessment, exposure assessment, and risk characteri
zation. Although the National Academies has not been asked to produce a report on epidemiology compa
rable with its Tox21 and ES21 reports, epidemiological research is also undergoing a transformation. Be
cause it plays a critical role in risk assessment by providing human evidence on adverse effects of 
chemical and other exposures, the committee assessed advances in epidemiology as part of its charge. The 
committee highlights here some of the advances, challenges, and needs in each field in the context of risk 
assessment. The committee's report provides specific recommendations to address the challenges. Over-

1Referred to hereafter as the Tox21 report. 
2Referred to hereafter as the ES21 report. 
3The verbatim statement of task is provided in Chapter 1 of the committee's report. 

Prepublication Copy 3 

ED_001449_00000002 



Using 21st Century Science to Improve Risk-Related Evaluations 

all, a common theme is the need for a multidisciplinary approach. Exposure scientists, toxicologists, epi
demiologists, and scientists in other disciplines need to collaborate closely to ensure that the full potential 
of 21st century science is realized to help to solve the complex environmental and public-health problems 
that society faces. 

Exposure Science 

A primary objective for improving exposure science is to build confidence in the exposure estimates 
used to support risk-based decision-making by enhancing quality, expanding coverage, and reducing un
certainty. The many scientific and technological advances that are transforming exposure science should 
help to meet that objective. Some of the endeavors that the committee considered promising for advanc
ing that objective and in which progress has been made since the ES21 report are highlighted below. 

:::: Remote sensing, personal sensors, and other sampling techniques. Remote sensing enhances the 
capacity to assess human and ecological exposures by helping to fill gaps in time and place left by tradi
tional ground-based monitoring systems. Advances in passive sampling techniques and personal sensors 
offer unparalleled opportunities to characterize individual exposures, particularly in vulnerable popula
tions. If remote sensing and personal sensors can be combined with global positioning systems, exposure 
and human-activity data can be linked to provide a more complete understanding of human exposures. 

Computational exposure tools. Because exposure-measurement data on many agents are not 
available, recent advances in computational tools for exposure science are expected to play a crucial role 
in most aspects of exposure estimation for risk assessments, not just high-throughput applications. How
ever, improving the scope and quality of data that are needed to develop parameters for these tools is crit
ically important because without such data the tools have greater uncertainty and less applicability. Com
parisons of calculated and measured exposures are required to characterize uncertainties in the 
computational tools and their input parameters. 

Targeted and nontargeted analyses. Advances in two complementary approaches in analytical 
chemistry are improving the accuracy and breadth of human and ecological exposure characterizations 
and are expanding opportunities to investigate exposure-disease relationships. First, targeted analyses 
focus on identifYing selected chemicals for which standards and methods are available. Improved analyti
cal methods and expanded chemical-identification libraries are increasing opportunities for such analyses. 
Second, nontargeted analyses offer the ability to survey more broadly the presence of all chemicals in the 
environment and in biofluids regardless of whether standards and methods are available. Nontargeted 
analyses reveal the presence of numerous substances whose identities can be determined after an initial 
analysis by using cheminformatic approaches or advanced or novel analytical techniques. 

-Omics technologies. -Omics technologies can measure chemical or biological exposures directly 
or identify biomarkers of exposure or response that allow one to infer exposure on the basis of a mecha
nistic understanding of biological responses. These emerging technologies and data streams will comple
ment other analyses, such as targeted and nontargeted analyses, and lead to a more comprehensive under
standing of the exposure-to-outcome continuum. Identifying biomarkers of exposure to individual 
chemicals or chemical classes within the complex exposures of human populations remains a considera
ble challenge for these tools. 

Exposure matrices for life-span research. Responding to the need to improve the characterization 
of fetal exposures to chemicals, researchers have turned to new biological matrices, such as teeth, hair, 
nails, placental tissue, and meconium. The growth properties (the sequential deposition or addition of tis
sue with accumulation of chemicals) and availability of the biospecimens offer the opportunity to extract 
a record of exposure. The question that needs to be addressed now is how concentrations in these matrices 
are related to and can be integrated with measures of exposure that have been traditionally used to assess 
chemical toxicity or risk. 

Physiologically based pharmacokinetic (PBPK) models. PBPK models are being applied more 
regularly to support aggregate (multiroute) exposure assessment, to reconstruct exposure from biomoni-
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toring data, to translate exposures between experimental systems, and to understand the relationship be
tween biochemical and physiological variability and variability in population response. An important fo
cus has been on the development of PBPK models for translating exposures between test systems and 
human-exposure scenarios, development that has been driven by the rapidly expanding use of high
throughput in vitro assays to characterize the bioactivity of chemicals and other materials. That research 
will remain critical as regulatory agencies, industry, and other organizations increase their dependence on 
in vitro systems. 

The emerging technologies and data streams offer great promise for advancing exposure science and 
improving and refining exposure measurements and assessment. However, various challenges will need to 
be addressed. A few are highlighted here. 

Expanding and coordinating exposure-science infrastructure. A broad spectrum of disciplines 
and institutions are participating in advancing exposure methods, measurements, and models. Given the 
number and diversity of participants in exposure science, the information is mostly fragmented, incom
pletely organized, and in some cases not readily available or accessible. Thus, an infrastructure is needed 
to improve the organization and coordination of the existing and evolving components for exposure sci
ence and ultimately to improve exposure assessment. Infrastructure development should include creating 
or expanding databases that contain information on chemical quantities in and chemical release rates from 
products and materials, on chemical properties and on processes, and analytical features that can be used 
in chemical identification. 

Aligning environmental and test-system exposures. Aligning information on environmental expo
sures with information obtained from experimental systems is a critical aspect of risk-based evaluation. 
Concentrations in test-system components need to be quantified by measurement, which is preferred, or 
by reliable estimation methods. Knowledge of physical processes, such as binding to plastic and volati
lization, and of biological processes, such as metabolism, needs to be improved. 

Integrating exposure information. Integration and appropriate application of exposure data on en
vironmental media, biomonitoring samples, conventional samples, and emerging matrices constitute a 
scientific, engineering, and big-data challenge. The committee emphasizes that integration of measured 
and modeled data is a key step in developing coherent exposure narratives, in evaluating data concord
ance, and ultimately in determining confidence in an exposure assessment. New multidisciplinary projects 
are needed to integrate exposure data and to gain experience that can be used to guide data collection and 
integration of conventional and emerging data streams. 

Toxicology 

The decade since publication of the Tox21 report has seen continued advances in an array of tech
nologies that can be used to understand human biology and disease at the molecular level. Technologies 
are now available to profile the transcriptome, epigenome, proteome, and metabolome. There are large 
banks of immortalized cells collected from various populations to use for toxicological research; large 
compilations of publicly available biological data that can be mined to develop hypotheses about relation
ships between chemicals, genes, and diseases; and genetically diverse mouse strains and alternative spe
cies that can be used for toxicological research. Highlighted below are some assays, models, and ap
proaches for predicting biological responses that have seen rapid advances over the last decade; they are 
arranged by increasing level of biological organization. 

:::J Probing interactions with biological molecules. Chemical interactions with specific receptors, en
zymes, or other discrete proteins and nucleic acids have long been known to have adverse effects on bio
logical systems, and development of in vitro assays that probe chemical interactions with cellular compo
nents has been rapid, driven partly by the need to reduce high attrition rates in drug development. The 
assays can provide reliable and valid results with high agreement among laboratories and can be applied 
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in low-, medium-, and high-throughput formats. Computational models have been developed to predict 
activity of chemical interactions with protein targets, and research to improve the prediction of protein
chemical interactions continues. 

Detecting cellular response. Cell cultures can be used to evaluate a number of cellular processes 
and responses, including receptor binding, gene activation, cell proliferation, mitochondrial dysfunction, 
morphological changes, cellular stress, genotoxicity, and cytotoxicity. Simultaneous measurements of 
multiple toxic responses are also possible with high-content imaging and other novel techniques. Fur
thermore, cell cultures can be scaled to a high-throughput format and can be derived from genetically dif
ferent populations so that aspects of variability in response to chemical exposure that depend on genetic 
differences can be studied. In addition to cell-based assays, numerous mathematical models and systems
biology tools have been advanced to describe various aspects of cell function and response. 

Investigating effects at higher levels of biological organization. The last decade has seen advanc
es in engineered three-dimensional (3-D) models of tissues. Organotypic or organ-on-a-chip models are 
types of 3-D models in which two or more cell types are combined in an arrangement intended to mimic 
an in vivo tissue and, therefore, recapitulate at least some of the physiological responses that the tissue or 
organ exhibits in vivo. NCATS, for example, has a number of efforts in this field. Although the models 
are promising, they are not yet ready for inclusion in risk assessment. In addition to cell cultures, compu
tational systems-biology models have been developed to simulate tissue-level response. EPA, for exam
ple, has developed virtual-tissue models for the embryo and liver. Virtual-tissue models can potentially 
help in conceptualizing and integrating current knowledge about the factors that affect key pathways and 
the degree to which pathways must be perturbed to activate early and intermediate responses in human 
tissues and, when more fully developed, in supporting risk assessments. 

Predicting organism and population response. Animal studies remain an important tool in risk 
assessment, but scientific advances are providing opportunities to enhance the utility of whole-animal 
testing. Gene-editing technologies, for example, have led to the creation of transgenic rodents that can be 
used to investigate specific questions, such as those related to susceptibility or gene-environment interac
tions. Genetically diverse rodent strains have provided another approach for addressing questions related 
to interindividual sensitivity to toxicants. Combining transgenic or genetically diverse rodent strains with 
-omics and other emerging technologies can increase the information gained from whole-animal testing 
alone. Those targeted studies can help to address knowledge gaps in risk assessment and can link in vitro 
observations to molecular, cellular, or physiological effects in the whole animal. In addition to the mam
malian species, scientific advances have made some alternative species-such as the nematode Caeno
rhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Dania rerio-useful animal 
models for hazard identification and investigation of biological mechanisms. 

The assays, models, and tools noted above hold great promise in the evolution of toxicology, but 
there are important technical and research challenges, a few of which are highlighted below. 

Accounting for metabolic capacity in assays. Current in vitro assays generally have little or no met
abolic capability, and this aspect potentially constrains their usefulness in evaluating chemical exposures 
that are representative of human exposures that could lead to toxicity. Research to address the metabolic
capacity issues needs to have high priority, and formalized approaches need to be developed to characterize 
the metabolic competence of assays, to determine for which assays it is not an essential consideration, and to 
account for the toxicity of metabolites appropriately. 

Understanding and addressing other limitations of cell systems. Cell cultures can be extremely 
sensitive to environmental conditions, responses can depend on the cell type used, and current assays can 
evaluate only chemicals that have particular properties. Research is needed to determine the breadth of 
cell types required to capture toxicity adequately; cell batches need to be characterized sufficiently before, 
during, and after experimentation; and practical guidance will need to be developed for cell systems re
garding their range of applicability and for describing the uncertainty of test results. 
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Addressing biological coverage. Developing a comprehensive battery of in vitro assays that co
vers the important biological responses to the chemical exposures that contribute to adverse health effects 
is a considerable challenge. In addition, most assays used in the federal government high-throughput test
ing programs were developed by the pharmaceutical industry and were not designed to cover the full ar
ray ofbiological response. As emphasized in the Tox21 report, research is needed to determine the extent 
of relevant mechanisms that lead to adverse responses in humans and to determine which experimental 
models are needed to cover these mechanisms adequately. Using -omics technologies and targeted testing 
approaches with transgenic and genetically diverse rodent species and alternative species will address 
knowledge gaps more comprehensively. 

When one considers the progress in implementing the Tox21 vision and the current challenges, it is 
important to remember that many assays, models, and tools were not developed with risk-assessment ap
plications as a primary objective. Thus, understanding of how best to apply them and interpret the data is 
evolving. The usefulness or applicability of various in vitro assays will need to be determined by contin
ued data generation and critical analysis, and some assays that are highly effective for some purposes, 
such as pharmaceutical development, might not be as useful for risk assessment of commodity chemicals 
or environmental pollutants. It will most likely be necessary to adapt current assays or develop new as
says specifically intended for risk-assessment purposes. 

Epidemiology 

The scientific advances that have propelled exposure science and toxicology onto new paths have 
also substantially influenced the direction of epidemiological studies and research. The factors reshaping 
epidemiology in the 21st century include expansion of the interdisciplinary nature of the field; the in
creasing complexity of scientific inquiry; emergence of new data sources and technologies for data gener
ation, such as new medical and environmental data sources and -omics technologies; advances in expo
sure characterization; and increasing demands to integrate new knowledge from basic, clinical, and 
population sciences. There is also a movement to register past and present datasets so that on particular 
issues datasets can be identified and combined. 

One of the most important developments has been the emergence of the -omics technologies and their 
incorporation into epidemiological research. -Omics technologies have substantially transformed epidemio
logical research and advanced the paradigm of molecular epidemiology, which focuses on underlying biolo
gy (pathogenesis) rather than on empirical observations alone. The utility of -omics technologies in epide
miological research is already clear and well exemplified by the many studies that have incorporated 
genomics. For example, the genetic basis of disease has been explored in genome-wide association studies 
in which the genomic markers in people who have and do not have a disease or condition of interest are 
compared. The -omics technologies that have been applied in epidemiological research, however, have now 
expanded beyond genomics to include epigenomics, proteomics, transcriptomics, and metabolomics. New 
studies are being designed with the intent of prospectively storing samples that can be used for existing and 
future -omics technologies. Thus, obtaining data from human population studies that are parallel to data ob
tained from in vitro and in vivo assays or studies is already possible and potentially can help in harmonizing 
comparisons of exposure and dose. Furthermore, -omics technologies have the potential for providing a 
suite of new biomarkers for hazard identification and risk assessment. 

Like exposure science and toxicology, epidemiology faces challenges in incorporating 21st century 
science into its practice. -Omics assays can generate extremely large datasets that need to be managed and 
curated in ways that facilitate access and analysis. Databases that can accommodate the large datasets, 
support analyses for multiple purposes, and foster data-sharing need to be developed. Powerful and robust 
statistical techniques also are required to analyze all the data. And standard ways to describe the data are 
needed so that data can be harmonized among investigative groups and internationally. 
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The landscape of epidemiological research is changing rapidly as the focus shifts from fixed, specif
ic cohorts, such as those in the Nurses' Health Study,4 to large cohorts enrolled from health-care organiza
tions or other resources that incorporate biospecimen banks and use health-care records to characterize 
participants and to track outcomes. Such studies offer large samples but will need new approaches to es
timate exposures that will work in this context. Thus, there will be a need for close collaboration with ex
posure scientists to ensure that exposure data are generated in the best and most comprehensive way pos
sible. Furthermore, various biospecimens are being collected and stored with the underlying assumption 
that they will be useful in future studies; researchers involved in such future-looking collections need to 
seek input from the scientists who are developing new assays so that the biospecimens can be collected 
and stored in a way that maximizes the potential for their future use. All those concerns emphasize the 
need to expand the multidisciplinary teams involved in epidemiological research. 

APPLICATIONS OF 21st CENTURY SCIENCE 

The scientific and technological advances described above and in further detail in this report offer 
opportunities to improve the assessment or characterization of risk for the purpose of environmental and 
public-health decision-making. The committee highlights below several activities-priority-setting, 
chemical assessment, site-specific assessment, and assessments of new chemistries-that could benefit 
from the incorporation of 21st century science. Case studies of practical applications are provided in Ap
pendixes B-D. 

Priority-setting has been seen as a principal initial application for 21st century science. High
throughput screening programs have produced toxicity data on thousands of chemicals, and high
throughput methods have provided quantitative exposure estimates. Several methods have been proposed 
for priority-setting, including risk-based approaches that use a combination of the high-throughput expo
sure and hazard information to calculate margins of exposure (differences between toxicity and exposure 
metrics). For that approach, chemicals that have a small margin of exposure would be seen as having high 
priority for further testing and assessment. 

Chemical assessment is another activity in which the committee sees great potential for application 
of 21st century science. Chemical assessments encompass a broad array of analyses. Some cover chemi
cals that have a substantial database for decision-making, and for these assessments scientific and tech
nical advances can be used to reduce uncertainties around key issues and to address unanswered ques
tions. Many assessments, however, cover chemicals on which there are few data to use in decision
making, and for these assessments the committee finds an especially promising application for 21st centu
ry science. One approach for evaluating data-poor chemicals is to use toxicity data on well-tested chemi
cals (analogues) that are similar to the chemicals of interest in their structure, metabolism, or biological 
activity in a process known as read-across (see Figure S-1 ). The assumption is that a chemical of interest 
and its analogues are metabolized to common or biologically similar metabolites or that they are suffi
ciently similar in structure to have the same or similar biological activity. The method is facilitated by 
having a comprehensive database of toxicity data that is searchable by curated and annotated chemical 
structures and by using a consistent decision process for selecting suitable analogues. The approach illus
trated in Figure S-1 can be combined with high-throughput in vitro assays, such as gene-expression anal
ysis, or possibly with a targeted in vivo study to allow better selection of the analogues to ensure that the 
biological activities of a chemical of interest and its analogues are comparable. The committee notes that 
computational exposure assessment, which includes predictive fate and transport modeling, is an im
portant complement to the approach described and can provide information on exposure potential, envi
ronmental persistence, and likelihood ofbioaccumulation. 

4The Nurses' Health Study is a prospective study that has followed a large cohort of women over many decades 
to identify risk factors for major chronic diseases. 
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Site-specific assessment represents another application for which 21st century science can play an 
important role. Understanding the risks associated with a chemical spill or the extent to which a hazard
ous-waste site needs to be remediated depends on understanding exposures to various chemicals and their 
toxicity. The assessment problem contains three elements-identifying and quantifying chemicals present 
at the site, characterizing their toxicity, and characterizing the toxicity of chemical mixtures-and the ad
vances described in this report can address each element. First, targeted analytical-chemistry approaches 
can identify and quantify chemicals for which standards are available, and untargeted analyses can help to 
assign provisional identities to previously unidentified chemicals. Second, analogue-based methods cou
pled with high-throughput or high-content screening methods have the potential to characterize the toxici
ty of data-poor chemicals. Third, high-throughput screening methods can provide information on mecha
nisms that can be useful in determining whether mixture components might act via a common 
mechanism, affect the same organ, or cause the same outcome and thus should be considered as posing a 
cumulative risk. High-throughput methods can also be used to assess the toxicity of mixtures that are pre
sent at specific sites empirically rather than assessing individual chemicals. 

Assessment of new chemistries is similar to the chemical assessment described above except that it 
typically involves new molecules on which there are no toxicity data and that might not have close ana
logues. Here, modern in vitro toxicology methods could have great utility by providing guidance on 
which molecular features are associated with greater or less toxicity and by identifying chemicals that do 
not affect biological pathways that are known to be relevant for toxicity. Modern exposure-science meth
ods might also help to identify chemicals that have the highest potential for widespread environmental or 
human exposure and for bioaccumulation. 

Animal Toxicity Dose-

Data on 

Appropriate 

Analogue 

Identify analogues on the basis of 
esimilar chemical structure 
esimilar physicochemical 
properties 
ecommon metabolism 
ecommon key events 
esimilar gene expression 

Chemical of 
Interest 

Adjust on the basis 
of pharmacokinetics 
of chemical of 
interest and 
biological activity 

Model or 
Apply UFs 

Health 
Reference 

Value 

FIGURE S-1 Approach to deriving health reference values when data on similar chemicals are available. Similarity 
can be based on such characteristics as chemical structure, physicochemical properties, metabolism, key events in 
biological pathways, or gene expression; similarity of several characteristics increases confidence in the analogy. 
The point of departure (POD) ofthe appropriate analogue would be adjusted on the basis ofpharmacokinetic differ
ences between the chemical of interest and the analogue and other important biological factors, such as receptor ac
tivation; relevant uncertainty factors would then be applied or models would be used to derive the health reference 
value. Accounting for uncertainty could include a determination of the degree of confidence in the read-across, in
cluding the number of analogues identified, the degree of similarity of the analogues to the chemical of interest, and 
the extent of the dataset on the analogues. 
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VALIDATION 

Before new assays, models, or test systems can be used in regulatory-decision contexts, it is ex
pected and for some purposes legally required that their relevance, reliability, and fitness for purpose be 
established and documented. That activity has evolved into elaborate processes that are commonly re
ferred to as validation of alternative methods. One critical issue is that current processes for validation 
cannot match the pace of development of new assays, models, and test systems, and many have argued 
that validation processes need to evolve. Important elements of the validation process that need to be ad
dressed include finding appropriate comparators for enabling fit- for-purpose validation of new test meth
ods, clearly defining assay utility and how assay data should be interpreted, establishing performance 
standards for assays and clear reporting standards for testing methods, and determining how to validate 
batteries of assays that might be used to replace toxicity tests. The committee discusses those challenges 
further and offers some recommendations in Chapter 6. 

A NEW DIRECTION FOR RISK ASSESSMENT AND THE CHALLENGES IT POSES 

The advances in exposure science, toxicology, and epidemiology described in this report support a 
new direction for risk assessment, one based on biological pathways and processes rather than on obser
vation of apical responses and one incorporating the more comprehensive exposure information emerging 
from new tools and approaches in exposure science. The exposure aspect of the new direction focuses on 
estimating or predicting internal and external exposures to multiple chemicals and stressors, characteriz
ing human variability in those exposures, providing exposure data that can inform toxicity testing, and 
translating exposures between test systems and humans. The toxicology and epidemiology elements of 
the new direction focus on the multifactorial and nonspecific nature of disease causation; that is, stressors 
from multiple sources can contribute to a single disease, and a single stressor can lead to multiple adverse 
outcomes. The question shifts from whether A causes B to whether A increases the risk of B. The com
mittee found that the sufficient-component-cause model, which is illustrated in Figure S-2, is a useful tool 
for conceptualizing the new direction. The same outcome can result from more than one causal complex 
or mechanism; each mechanism generally involves joint action of multiple components. 

Most diseases that are the focus of risk assessment have a multifactorial etiology; some disease 
components arise from endogenous processes, and some result from the human experience, such as back
ground health conditions, co-occurring chemical exposures, food and nutrition, and psychosocial stress
ors. Those additional components might be independent of the environmental stressor under study but 
nonetheless influence and contribute to the overall risk and incidence of disease. As shown in the case 

FIGURE S-2 Multifactorial nature of disease illustrated by using the sufficient-component-cause model in which 
various overall mechanisms (I, II, and III) for a disease are represented as causal pies of various components (A-J). 
The committee considers pathways to be components of the mechanism. 
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studies in this report, one does not need to know all the pathways or components involved in a particular 
disease to begin to apply the new tools to risk assessment. The 21st century tools provide the mechanistic 
and exposure data to support dose-response characterizations and human-variability derivations described 
in the NRC report Science and Decisions: Advancing Risk Assessment. They also support the understand
ing of relationships between disease and components and can be used to probe specific chemicals for their 
potential to perturb pathways or activate mechanisms and increase risk. 

The 21st century science with its diverse, complex, and very large datasets, however, poses chal
lenges related to analysis, interpretation, and integration of data and evidence for risk assessment. In fact, 
the technology has evolved far faster than the approaches for those activities. The committee found that 
Bradford-Hill causal guidelines could be extended to help to answer such questions as whether specific 
pathways, components, or mechanisms contribute to a disease or outcome and whether a particular agent 
is linked to pathway perturbation or mechanism activation. Although the committee considered various 
methods for data integration, it concluded that guided expert judgment should be used in the near term for 
integrating diverse data streams for drawing causal conclusions. In the future, pathway-modeling ap
proaches that incorporate uncertainties and integrate multiple data streams might become an adjunct to or 
perhaps a replacement for guided expert judgment, but research will be needed to advance those ap
proaches. The committee emphasizes that insufficient attention has been given to analysis, interpretation, 
and integration of various data streams from exposure science, toxicology, and epidemiology. It proposes 
a research agenda that includes developing case studies that reflect various scenarios of decision-making 
and data availability; testing case studies with multidisciplinary panels; cataloguing evidence evaluations 
and decisions that have been made on various agents so that expert judgments can be tracked and evaluat
ed, and expert processes calibrated; and determining how statistically based tools for combining and inte
grating evidence, such as Bayesian approaches, can be used for incorporating 21st century science into all 
elements of risk assessment. 

CONCLUDING REMARKS 

As highlighted here and detailed in the committee's report, many scientific and technical advances 
have followed publication of the Tox21 and ES21 reports. The committee concludes that the data that are 
being generated today can be used to address many of the risk-related tasks that the agencies face, and it 
provides several case studies in its report to illustrate the potential applications. Although the challenges 
to achieving the visions of the earlier reports often seem daunting, 21st century science holds great prom
ise for advancing risk assessment and ultimately for improving public health and the environment. The 
committee emphasizes, however, that communicating the strengths and limitations of the approaches in a 
transparent and understandable way will be necessary if the results are to be applied appropriately and 
will be critical for the ultimate acceptance of the approaches. 
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Introduction 

Over the last decade, several large-scale US and international programs have been initiated to incor
porate advances in molecular and cellular biology, -omics technologies, analytical methods, bioinformat
ics, and computational tools and methods into the field of toxicology. The overarching goal of the various 
programs is to move toxicology from a practice that uses whole-animal testing to one that uses primarily 
modern in vitro assays and computational approaches to predict toxicity on the basis of an understanding 
of the biological processes that ultimately lead from the initial chemical exposure to adverse effects. Simi
lar efforts are being pursued in the field of exposure science with the goals of obtaining more accurate and 
complete exposure data on individuals and populations for thousands of chemicals over the lifespan; pre
dicting exposures from use data and chemical-property information; and translating exposures between 
test systems and humans. It is hoped that the advances in toxicology and exposure science and better inte
gration of the fields will improve risk assessment and thus better support decision-making to improve 
public and environmental health. With various efforts under way, diverse data are being generated, and 
their utility for risk assessment investigated. Although the programs and the data being generated are still 
evolving and will undoubtedly continue to do so, some data could be used now to help to fill gaps and 
assess chemical risk better. Several federal agencies recognize the potential value of such data in helping 
them to address their many challenging tasks. Accordingly, the US Environmental Protection Agency 
(EPA), the Food and Drug Administration (FDA), the National Institute of Environmental Health Scienc
es (NIEHS), and the National Center for Advancing Translational Sciences (NCATS) asked the National 
Academies of Sciences, Engineering, and Medicine to consider the integration of modern and emerging 
scientific approaches and data into risk-based evaluations and to recommend the best ways to do so. As a 
result of the request, the National Academies convened the Committee on Incorporating 21st Century 
Science into Risk-Based Evaluations, which prepared this report. 

TOXICOLOGY IN THE 21st CENTURY 

In the early 2000s, several agencies and organizations began to recognize the potential of various 
scientific advances in biology and related fields and the possibilities provided by increases in computa
tional power to characterize risks of environmental exposures. Roadmaps were developed to incorporate 
such advances into their strategic plans for assessing chemicals and other agents (EPA 2003; NTP 2004). 
In 2007, the National Research Council (NRC) released the report Toxicity Testing in the 21st Century: A 
Vision and a Strategy, 1 which envisioned transforming toxicity testing from a system that relies on animal 
assays to one that relies primarily on high-throughput in vitro assays and computational methods based on 
human biology. The primary goals behind the vision were "(I) to provide broad coverage of chemicals, 
chemical mixtures, outcomes, and life stages, (2) to reduce the cost and time of testing, (3) to use fewer 
animals and cause minimal suffering in the animals used, and ( 4) to develop a more robust scientific basis 
for assessing health effects of environmental agents" (NRC 2007). The committee that prepared the 2007 
report emphasized that the transformation would require a focused effort over several decades for full im
plementation. On release of the report, the NIEHS National Toxicology Program, the EPA National Cen
ter for Computational Toxicology, and the Chemical Genomics Center2 of the National Institutes of 

1Referred to hereafter as the Tox21 report. 
2The Chemical Genomics Center is now part ofNCATS. 
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Health formed a collaboration, known as Tox21, to advance the vision set forth in the 2007 report (Col
lins et al. 2008). FDA later joined the collaboration. 

The goals of the Tox2l collaboration are to identity and characterize specific mechanisms or path
ways that lead to adverse effects in humans, to design assays to measure pathway responses, to develop 
models that can predict toxicity using the assay data, and to set priorities among chemicals for more com
prehensive toxicity testing (NCATS 2015a). It is planned that the data generated will ultimately help to 
inform EPA, FDA, and other agencies on the hazards posed by the chemicals or products that they regu
late and will be used by industry to screen for potential toxicity in product development. A phased ap
proach to the research is being taken. Phase I of Tox2l has been completed and involved testing of about 
2,800 chemicals in about 50 assays, including ones to assess cytotoxicity, mitochondrial toxicity, cell sig
naling, DNA damage, immune response, drug metabolism, nuclear-receptor activation, and inhibition of 
various molecular targets (Tice et al. 20 13; NCATS 20 15b ). Phase II involves testing of over 10,000 
chemicals that occupy a diverse chemical and toxicological space and include "industrial chemicals, sun
screen additives, flame retardants, pesticides and selected metabolites, plasticizers, solvents, food addi
tives, natural product components, drinking water disinfection by-products, preservatives, therapeutic 
agents, and chemical synthesis by-products" (Tice et al. 2013). Phase III will involve identification of 
physiologically relevant cells, measurement of gene expression in a large number of molecular pathways, 
and testing of chemical mixtures and extracts (NCATS 20 15b ). 

In 2007, EPA initiated its Toxicity Forecaster (ToxCast) program, which seeks to develop high
throughput screening (HTS) assays for evaluating biological responses that are relevant to prediction of 
adverse effects of chemical exposures on humans (EPA 2013). A phased approach to research is also be
ing taken in the ToxCast program. Phase I, which has been completed, involved testing of over 300 well
studied chemicals in several hundred HTS assays (Kavlock and Dix 2010). Phase II has also been com
pleted; it involved testing of over 2,000 chemicals-including industrial and consumer products, food 
additives, and potentially safer chemical alternatives to existing chemicals-in HTS assays for evaluating 
various cell responses and over 300 signaling pathways (EPA 2013; Silva et al. 2015). ToxCast data are 
now being evaluated as a means of setting priorities among chemicals for testing in EPA's Endocrine Dis
ruptor Screening Program and in other programs that require setting priorities for testing. 

In addition to US government-led efforts, international efforts are transforming toxicology from an 
observational to a predictive science. In the European Union, for example, the European Commission and 
Cosmetics Europe (a trade association for the cosmetics and personal-care industry) have co-funded the 
research initiative Safety Evaluation Ultimately Replacing Animal Testing (SEURAT 20 15). The initia
tive was started to develop tools to comply with legislation that banned all animal testing for cosmetic 
ingredients and all marketing of animal-tested cosmetic ingredients and products; a complete ban went 
into effect in March 2013. Its vision was to eliminate traditional animal testing by adopting a "toxicologi
cal mode-of-action framework to describe how any substance may adversely affect human health, and use 
this knowledge to develop complementary theoretical, computational and experimental (in vitro) models 
that predict quantitative points of departure needed for safety assessment" (Berggren 20 15). The research 
initiative was a 5-year program (20 11-20 15) that involved development of in vitro assays that use human 
pluripotent stem cells, development of a hepatic microfluidic bioreactor, identification and investigation 
of human biomarkers of chronic toxicity in cellular models, and development of computational tools for 
predicting chronic toxicity. 

Private industry and other organizations are also working to transform the ways in which chemicals 
are assessed. For example, the pharmaceutical industry has been developing and using in vitro and com
putational tools as early screens for drug safety for many years (Greene and Song 2011; Bowes et al. 
2012). Organizations have developed case studies related to the use of new in vitro assays and computa
tional systems-biology tools for assessment of chemical risk (Daston et al. 2015; Gocht et al. 2015). 
Cheminformatics research has resulted in the development of rational systems for informing qualitative 
structure-activity relationship assessments (Wu et al. 201 0) and in the development of automated decision 
trees for identifying toxicity end points, such as developmental and reproductive toxicity (Wu et al. 2013). 
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Academic institutions are generating a substantial amount of data that could help to inform chemical 
risk assessment. Academic laboratories tend to focus on end points that are not typically covered in guide
line animal studies, such as mammary gland development (Fenton 2006; Soto et al. 2008; Osborne et al. 
20 15), synaptic morphology and other aspects of nervous system development (Patisaul and Polston 
2008), and complex behaviors, including sociality, aggression, cognition, and behavioral hallmarks of 
psychiatric disorders, such as autism spectrum disorder and attention deficit disorder (Eubig et al. 2010; 
de Cock et al. 2012; Leon-Olea et al. 2014). Research on genetics, genomics, and epigenetics (including 
the role of noncoding RNAs) is also abundant and is providing insights on novel biological mechanisms 
and gene-by-environment interactions (Dolinoy et al. 2007; Rusyn et al. 2010; Tal and Tanguay 2012; 
Nebert et al. 2013; Yeo et al. 2013). Academic laboratories have been responsible for generating nearly 
all the data on transgenerational effects (Rissman and Adli 2014); have pioneered the use of nontradition
al animal models, including transgenic and population-based models (Churchill et al. 2004; Rusyn et al. 
2010; Sullivan et al. 2014); and have conducted most of the epidemiological studies of chemical risk. The 
enormous volume of data being generated throughout the basic- and clinical-research communities has 
prompted questions about how the data could best be used for various risk-related activities and decision
making. 

EXPOSURE SCIENCE IN THE 21st CENTURY 

Exposure science is undergoing a transformation similar to that affecting toxicology with the ad
vances in molecular technologies, computational tools, bioinformatics, sensor systems, and analytical 
methods. In 2012, NRC released the report Exposure Science in the 21st Century: A Vision and a Strate
gy,3 which articulated a long-term vision for exposure science. The primary long-term goal of the vision 
was to broaden the reach of exposure science from a traditional focus on discrete exposures to an "inte
grated approach that considers exposures from source to dose, on multiple levels of integration (including 
time, space, and biological scale), to multiple stressors, and scaled from molecular systems to individuals, 
populations, and ecosystems" (NRC 2012). The report described scientific and technological progress that 
has the potential to transform exposure science, including geographic information technologies that can 
track sources, exposure concentrations, and receptors; monitoring technologies that can collect data on 
personal exposure of millions of people; highly sensitive analytical technologies that can identify and 
measure biomarkers that are indicative of internal exposures; and computational tools that can manage the 
large amounts of data generated. It also highlighted high-priority research, emphasized the need for inter
agency collaboration and resources, and elaborated the broad concept of the exposome, defined as "the 
record of all exposures both internal and external that people receive throughout their lifetime (Rappaport 
and Smith 201 0)." Last, it recognized the interdependence of the fields of toxicology, risk assessment, and 
exposure science and foresaw the need to evolve the risk-assessment paradigm toward one in which expo
sure science plays a strong role, specifically, a paradigm that is "influenced by and responsive to human 
and environmental exposure data." The report described four objectives of exposure science: to set priori
ties among chemicals for toxicity testing; to provide exposure information to guide toxicity testing; to 
provide quantitative pharmacokinetic data on absorption, distribution, metabolism, and excretion 
(ADME) derived from human-exposure studies; and to connect exposure data with biological activity da
ta to identify exposure-response relationships. 

In response to the recommendation to improve integration of exposure science throughout the feder
al government, the Exposure Science in the 21st Century (ES21) Federal Working Group has emerged 
(EPA 20 16a). It consists of representatives of more than 20 federal organizations that have a common 
interest in exposure-science research and development. The purpose of the working group is to build on 
the framework recommended in the ES21 report, share information, integrate activities, reduce duplica
tion of efforts among agencies, and promote federal collaboration in the development of exposure science. 
In addition to the activities of the working group, several research programs are involved in advancing 

3Referred to hereafter as the ES21 report. 
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exposure science on paths that are consistent with the vision articulated in the ES21 report. EPA created 
the Exposure Forecasting (ExpoCast) program, which complements its ToxCast program (EPA 2016b). 
ExpoCast focuses on developing high-throughput methods for estimating exposure and so far has been 
used to make exposure predictions related to over 1,900 chemicals. EPA's goal is to combine the expo
sure estimates from ExpoCast with bioactivity data from ToxCast to predict human health and environ
mental risks. 

NIEHS is also interested in advancing exposure science and has supported research to develop new 
sensor systems and to identify biomarkers of response to exposure (NIEHS 20 15). It has created the Chil
dren's Health Exposure Analysis Resource (NIEHS 2016), an infrastructure designed to enable and ex
pand incorporation of environmental exposures into studies of children's health; it includes a data reposi
tory, support for statistical analysis, and a network of laboratories to analyze biological samples. The 
NIEHS strategic plan emphasizes a commitment to supporting research to define and explore the expo
some, and the agency has funded the HERCULES center at Emory University to conduct exposome
focused research (NIEHS 2012). 

In addition to the efforts in the United States, there are international efforts, such as the Human Ear
ly-Life Exposome (HELIX) project and the EXPOsOMICS project. HELIX has the ambitious goal of 
characterizing early-life exposures and ultimately linking exposures with children's health outcomes 
(Vrijheid et al. 2014). The project is studying 32,000 mother-child pairs in six European countries. 
EXPOsOMICS focuses on the external and internal exposome associated with air pollution and water 
contamination (Vineis et al. 2013, in press). The project will perform personal-exposure monitoring of air 
pollutants for hundreds of subjects in Europe, and biological samples from thousands of subjects will be 
analyzed for internal exposure markers by using -omics technologies (CORDIS 2015). 

Like the toxicology initiatives, the exposure programs are generating vast amounts of data, but how 
the data are best used to inform risk-related tasks and decision-making remains to be determined. 

TERMINOLOGY 

The recent advances in toxicology and exposure science have given rise to a new vocabulary and a 
plethora of new terms. Some researchers and practitioners distinguish between terms, but others use the 
same terms interchangeably and inconsistently. Consequently, there is some confusion as to the specific 
meanings of various terms. Mode of action, mechanism of action, and adverse outcome pathway are ex
emplary of the confusion. Each term denotes a progression from some exposure or molecular initiating 
event to an adverse outcome. Mechanism of action is often distinguished from mode of action by a greater 
level of biological detail in the understanding and description of the progression from exposure to out
come (EPA 2005; NRC 2007). Mode of action typically describes the progression of key events that result 
from a chemical exposure whereas adverse outcome pathway conceptually describes the sequential chain 
of causally linked events at various levels of biological organization starting from a molecular initiating 
event through to the observable adverse outcome (OECD 2013; Berggren et al. 2015). Although all three 
terms are used to describe the sequence of steps from an initiating event to an adverse outcome, subtle 
distinctions between the terms have been made. The subtleties are often lost in practice, and the terms are 
used interchangeably. In the present report, the committee uses primarily mechanism and defines the term 
generally to refer to a detailed description of the process by which an agent causes an effect. It uses ad
verse outcome pathway only in the context of frameworks that have been developed specifically with the 
phrase. Mechanism is further defined in the context of the new direction of risk assessment in Chapters 5 
and 7. 

Exposure and dose are two other terms that are often defined and used inconsistently. NRC (2012) 
defined exposure broadly as the contact between a stressor and a receptor at any level of biological organ
ization (organism, organ, tissue, or cell). Given that broad definition, the distinction between exposure 
and dose becomes arbitrary, and dose becomes unnecessary. Exposure is then characterized by the identi
ty of the stressor and the amount, location, and timing of the stressor that comes into contact with the re
ceptor; timing encompasses both duration and the time at which the contact occurs. The committee uses 
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exposure primarily in the present report but acknowledges that it often uses dose in conventional phrases, 
such as dose-response relationship. 

Many terms associated with -omics technologies have been coined in recent years. Box 1-1 provides 
definitions of various terms used throughout this report. Other terms that are specific to topics discussed 
in various chapters are defined in those chapters. The committee acknowledges that as the science pro
gresses new terms will be needed, but it urges the scientific community to be judicious in inventing new 
terms. If needed, new terms should be defined clearly and used consistently. 

The committee debated how to refer to all the assays, tools, and methods arising from the "21st cen
tury visions" for toxicology and exposure science; some are no longer "new," and others are still in de
velopment. To simplify the text, the committee often refers to them as Tox21 or ES21 assays, tools, or 
methods. That notation is meant to be broad and includes all the assays, tools, and methods coming from 
government, academic, and private laboratories, not only those being developed as part of the Tox21 pro
gram previously described. 

THE COMMITTEE AND ITS TASK 

The committee that was convened as a result of the agencies' request included experts in toxicology; 
physiologically based pharmacokinetic modeling; computational methods and bioinformatics; -omics, in 
vitro models, and alternative methods; epidemiology; exposure assessment; statistics; and risk assessment 
(see Appendix A for the committee's biographical information). As noted, the committee was asked to 
consider and recommend the best uses of the various types of emerging data in risk-based evaluations. 
The committee's verbatim statement of task is provided in Box 1-2. 

BOX 1-1 Definitions of Various -Omics Terms 

Adductomics: The comprehensive identification of chemicals that bind to DNA or selected proteins, 
such as albumin. 

Epigenomics: The analysis of epigenetic changes in DNA, histones, and chromatin that regulate gene 
expression. Epigenetic changes are changes other than changes in DNA sequence that are involved 
in gene silencing. 

Exposome: A term first coined by Wild (2005) to represent the totality of a person's exposure from 
conception to death; exposome research involves the measurement of multiple exposure indicators by 
using -omics approaches. 

Genomics: The analysis of the structure and function of genomes. 

Metabolomics: The scientific study of small molecules (metabolites) that are created from chemicals 
that originate inside the body (endogenously) or outside the body (exogenously) (National Academies 
of Sciences, Engineering, and Medicine 2016). For purposes of the present report, metabolomics is 
assumed to include exogenous chemicals found in biological systems in their unmetabolized forms. 

Proteomics: The analysis of the proteins produced by cells, tissues, or organisms. Analysis is con
ducted to understand the location, abundance, and post-translational modification of proteins in a bio
logical sample. 

Transcriptomics: Qualitative and quantitative analysis of the transcriptome, that is, the set of tran
scripts (mRNAs, noncoding RNAs, and miRNAs) that is present in a biological sample. 
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BOX 1-2 Statement of Task 

An ad hoc committee under the auspices of the National Research Council (NRC) will provide 
recommendations on integrating new scientific approaches into risk-based evaluations. Specifically, 
the committee will first consider the scientific advances that have occurred following the publication of 
the NRC reports Toxicity Testing in the 21st Century: A Vision and a Strategy and Exposure Science 
in the 21st Century: A Vision and a Strategy. Given the various ongoing lines of investigation and new 
data streams that have emerged, the committee will then propose how best to integrate and use the 
emerging results in evaluating chemical risk and identify how traditional human-health risk assessment 
can incorporate the new science. It will consider whether a new paradigm is needed for data validation 
(or acceptance), how to integrate the divergent data streams, how uncertainty might need to be char
acterized (or how characterization of uncertainty might need to change), and how best to communicate 
the new approaches so that they are understandable to various stakeholders. It will focus its recom
mendations on pragmatic solutions and provide case studies that illustrate its recommendations. Final
ly, the committee will identify barriers or obstacles to advancing and integrating the various types of 
science, and ultimately transforming risk assessment. 

THE COMMITTEE'S APPROACH TO ITS TASK 

To address its task, the committee held seven meetings, which included three open sessions to hear 
primarily from various sponsor representatives. Given the potential breadth of its task, the committee de
voted substantial time to interpretation of its charge. It used as a basis of its work the risk-assessment 
framework that was initially proposed in the 1983 report Risk Assessment in the Federal Government: 
Managing the Process (NRC 1983) and updated most recently in the 2009 report Science and Decisions: 
Advancing Risk Assessment (NRC 2009) (see Figure 1-1 ). The committee considered and describes scien
tific and technological advances in exposure science, toxicology, and epidemiology that could be inte
grated into and used to improve any of the four elements of risk assessment (hazard identification, dose
response assessment, exposure assessment, and risk characterization). The report, however, is not a cata
log of all scientific and technological advances that have been made since publication of the 2007 and 
2012 reports (NRC 2007, 2012), but rather a review of the ones most relevant to risk-based evaluations in 
EPA and FDA. 

• Hazard Identification 

What adverse health or environmental effects are associated with 
the agents of concern? 

• Dose-Response Assessment 

For each adverse effect, what is the relationship between dose and 
the probability of the occurrence of the adverse effect in the range 
of doses identified in the exposure assessment? 

• Risk Characterization 

What is the nature and 
magnitude of risk associated 

with existing conditions? 

I 
What risk decreases (benefits) 

~ are associated with each of 
1--------------31>) the options? 

Are any risk increased? What 
are the significant • Exposure Assessment 

What exposures or doses are incurred by each population of interest 
under existing conditions? 

How do various management options affect existing conditions and 
resulting exposures or doses? 

uncertainties? 

FIGURE 1-1 The risk-assessment proeess as defined by its four elements: hazard identifieation, dose-response assessment, ex
posure assessment, and risk eharaeterization. Souree: Adapted from NRC 2009. 
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The committee identified various agency tasks and decision-making contexts (see Box 1-3)-which 
require different depths of information-and used the tasks and contexts to frame general and specific 
examples of applications (case studies) for integrating the new science into various components of risk 
assessment. The examples provide guidance for communicating to various stakeholders how the new sci
ence could be used. The committee then considered how data validation, data integration, and uncertainty 
analysis might need to be adapted to use the new science. The committee recognizes that there will be 
challenges in using new tools and concepts in fields that are already heavy with practice standards and set 
protocols. 

BOX 1-3 Agency Tasks and Decision-Making Contexts 

1) Priority-setting-Can be based on hazard, exposure, or risk. 
2) Chemical assessment-Can include Integrated Risk Information System assessments, Provisional 

Peer Reviewed Toxicity Values, National Toxicology Program Office of Health Assessment and 
Translation hazard assessments, and assessments of various regulated substances, such as pesti
cides, drugs, and food additives. 

3) Site-specific assessments-Can involve selection of geographic sites or chemicals at a site to eval
uate and can involve assessment of data-poor chemicals or mixtures; can also involve assessment 
of previously unidentified chemicals in the environment. 

4) Assessment of new chemistries-Can involve assessment of green chemistry, new-to-the-world 
technologies, and unexpected environmental degradation products of chemicals in commerce. 

ORGANIZATION OF THIS REPORT 

The committee's report is organized into seven chapters and five appendixes. Chapters 2, 3, and 4 
describe new or emerging methods and tools in exposure science, toxicology, and epidemiology, respec
tively. Chapter 5 highlights the new direction of risk assessment and describes practical applications for 
21st century science. Chapter 6 discusses issues surrounding model and assay validation and acceptance. 
Chapter 7 focuses on interpretation and integration of data and evidence. Appendix A provides biograph
ical information on the committee members, and Appendixes B, C, and D provide case studies that 
demonstrate practical applications of the committee's recommendations for using new data streams in 
risk-based evaluations. Appendix E provides a case study in using Bayesian approaches with high
throughput data. 
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2 

Advances in Exposure Science 

As described in Chapter 1, the National Research Council (NRC) report Exposure Science in the 
21st Century: A Vision and a Strategy articulated a vision for exposure science that was intended to trans
form, expand, and invigorate the field (NRC 2012). Recent investments in exposome technologies and 
programs (CREAR; NIEHS 2016), in new large-scale longitudinal exposure-epidemiology research pro
grams (HELIX; Vrijheid et al. 2014 and EXPOsOMICS; Vineis et al. 2013), and in the rapidly expanding 
exposure-science programs headed by the National Exposure Research Laboratory and the National Cen
ter for Computational Toxicology of the US Environmental Protection Agency (EPA) are examples of the 
immediate impact of the ES21 report. 1 Several research fields have seen substantial advances since the 
ES21 report was published, and these advances create opportunities for providing guidance to EPA, the 
Food and Drug Administration, and others on how best to integrate emerging exposure-science data into 
risk assessments (Egeghy et al. 2016). Accordingly, this chapter describes the major advances in exposure 
science since the publication of the ES21 report and applications that would be most relevant and useful 
for risk-based decision-making. It also presents unaddressed opportunities related to decision-making 
based on exposure or risk and discusses major obstacles to various applications. 

The interrelationship among the fields of exposure science, toxicology, and epidemiology is a central 
theme of this chapter. Figure 2-1 illustrates the series of events from introduction of a stressor into the envi
ronment and its movement through the environment via specific pathways to the receptor and the triggering 
of a biological response of potential regulatory concern. The figure provides a broad conceptual overview of 
the scope of exposure science and a general organizational framework as envisaged by the ES21 committee 
and the present committee. The figure also illustrates the points of integration with toxicology and epidemi
ology and the fundamental distinctions between fields. Although the continuum is depicted as a linear path, 
the committee recognizes that multiple interconnecting paths are typically involved in the source-to
outcome continuum. In cases where source identification or mitigation rather than toxicology or risk as
sessment is the goal, one moves from right to left from measured exposures to sources. Box 2-1 provides 
some definitions of the key terms used in this chapter related to exposure science. 

Organizational frameworks for exposure science, such as the one in Figure 2-1, have been used to 
describe exposure pathways for contaminated sites and are implicit in all models of environmental or bio
logical fate of chemicals (Wania and Mackay 1999; Koelmans et al. 2001; Schenker et al. 2009). The 
frameworks have been essential in guiding the acquisition of data, the organization of data, and the use of 
data in modeling to describe or predict exposure quantitatively. Although some frameworks, such as the 
Conceptual Site Model (Regens et al. 2002; Mayer et al. 2005), are largely qualitative and conceptual and 
apply to specific exposure settings or specifically to modeling exercises, others, such as the Aggregate 
Exposure Pathway framework (Teeguarden et al. 2016), attempt to expand on earlier successes by gener
alizing the approach to support data acquisition, data organization, conceptualization, and modeling in the 
broader exposure-science community. As the field of exposure science evolves as a result of advances in 
the tools and approaches described in this chapter, the use of the frameworks will enable the development 
of infrastructure to support exposure-data acquisition, collection, organization, and access and to improve 
the accuracy, completeness, efficiency, and transparency of exposure assessment and modeling. 

1The present committee refers to Exposure Science in the 21st Century: A Vision and a Strategy (NRC 2012) as 
the ES21 report and to its committee as the ES21 committee. 
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FIGURE 2-1 Conceptual overview of the scope of and common methods for exposure science. Toxicology and 
epidemiology have traditionally used both internal-exposure and external-exposure information. The biological in
terface between exposure and a receptor (such as a human, tissue, or cell) is the test-system or target-site exposure. 
The main benefit of applying target-site exposures is a reduction in confounding by pharmacokinetic and other fac
tors and has led to increasing use of target-site exposure metrics in toxicology and epidemiology. 

MAJOR ADVANCES IN EXPOSURE SCIENCE 

The committee reviewed advances in the field of exposure science since the publication of the ES21 
report with the goal of identifying major advances that have the potential for sustained effects on the im
portant applications described later in this chapter and in the case studies described in Appendixes B-D. 
The advances are summarized in this section. 

Remote Sensing and Geospatial Environmental Exposure Assessment 

Several substantial advances in exposure science are the result of innovations in remote sensing, 
global positioning systems (GPS), and geographic information systems (GIS). Remote sensing is an im
portant tool for enhancing the capacity to assess human and ecological exposures because it provides in
formation on Earth's surface, water, and atmosphere that cannot be provided by traditional ground-based 
monitoring systems (Al-Hamdan et al. 2014). Since the ES21 report, remote-sensing data have been used 
to estimate concentrations of ambient criteria air pollutants (N02 , 0 3 , and PM2 5) on a global scale (Brauer 
et al. 2015; Geddes et al. 2016; van Donkelaar et al. 2015). Models have estimated the changes in global 
air pollution and have allowed complete global coverage of key pollutants on a relatively fine spatial 
scale. The application of remote-sensing technologies with ground-based monitoring will continue to im
prove human exposure assessment. Several recent key advances include the National Aeronautics and 
Space Administration (NASA) launch of six Earth-observing missions and the addition of three new in
struments to the International Space Station (Seltenrich 2014). NASA and the National Oceanic and At
mospheric Administration provide free access to exposure-relevant data, such as N02 and PM2 5 concen
trations in the troposphere, and environmental data relevant to exposure assessment and interpretation of 
monitoring data (Seltenrich 2014). 
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BOX 2-1 Definitions of Selected Exposure Terms 

Exposure science. "The collection and analysis of quantitative and qualitative information needed to 
understand the nature of contact between receptors (such as people or ecosystems) and physical, 
chemical, or biologic stressors. Exposure science strives to create a narrative that captures the spatial 
and temporal dimensions of exposure events with respect to acute and long-term effects on human 
populations and ecosystems" (NRC 2012). 

Internal and external exposure. Internal and external exposures are two commonly used classes of 
exposure metrics. Blood or tissue concentrations from biomonitoring studies are relatively direct 
measures of internal exposure; amounts or concentrations in biofluids leaving the body (breath and 
urine) are less direct measures. Internal measures can be estimated from the less direct measures 
when supporting pharmacokinetic data and models are available. Air or media concentrations are ex
ternal measures of exposure from which internal measures of exposure might be derived if necessary. 
What exposure metric is considered appropriate depends on the decision context, confidence in the 
measurement, and proximity to the site of action. 

Near-field chemical exposures. Near-field human exposures result from chemical release or use 
near a person. Near-field chemical exposures include direct dermal application (for example, of sun
screen or cosmetics), direct inhalation (for example, of tobacco smoke or pharmaceuticals), and direct 
ingestion (for example, of pharmaceuticals). Near-field chemical exposures can also result from the 
intentional use (as in the case of consumer products) and inadvertent release (as in the case of build
ing materials) of chemicals near a person and later near-field transport to a person that results in con
tact or intake through inhalation, dermal, or ingestion pathways. 

Far-field chemical exposures. Far-field human exposures result from release or use distant from a 
person. They can also result from initial near-field use (indoors) and later fate and transport in the nat
ural environment (outdoors) before the chemical reaches a person. Far-field exposures can result from 
inhalation of outdoor air and ingestion of drinking water and foods that contain chemicals that have 
entered the contact media through fate and transport processes in the natural environment. 

Aggregate exposure. Aggregate exposure is exposure to a given substance from multiple sources 
via multiple pathways and routes (that is, combined exposure from multiple sources by dermal, inges
tion, and inhalation routes). 

The studies generated with remote sensing data provide even greater insights into human exposures 
when coupled with GPS and GIS data on populations of interest. GPS data are used to track people in ob
servational exposure and epidemiological studies (Elgethun et al. 2007), and recent advances have al
lowed more automated coding of GPS data on activities and microenvironments, such as inside and out
side at home and at work (Wu et al. 2011; Breen et al. 2014; Nethery et al. 2014; Andra et al. 2015). Data 
on microenvironments can be used as input for exposure models to refine exposure estimates based on 
remote sensing data, ground-based ambient air data, and indoor air monitoring data (Breen et al. 2014). 
Advances in GPS technologies have also been coupled with sensor technologies that measure basic health 
data, such as heart and respiratory rates and activity level. Information on such measures can be additional 
inputs for the exposure models and allow further refinement and improvement of exposure classification 
(Andersen et al. 2015). 

Computational Exposure Assessment 

For the vast majority of stressors, there are few exposure measurements (Muir and Howard 2006; 
Egeghy et al. 2012). Various conceptual, empirical, and predictive exposure models are needed to address 
those data gaps and to enhance the usefulness and application of measured data to exposure and risk as-
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sessment. Since the release of the ES2l report, there has been substantial research activity and advance
ment in the development of computational exposure tools, particularly for calculating near-field chemical 
exposures of humans, for quantifying relationships between external and internal exposures and between 
in vivo and in vitro exposures, and for high-throughput exposure estimation that has been used alone and 
in combination with bioactivity data to set priorities for chemical assessment. 

Egeghy et al. (2011) reviewed tools designed to set priorities rapidly for large numbers of chemicals, 
and Mitchell et al. (2013) conducted an "exposure model prioritization challenge." A key finding of the 
challenge was the need to reconcile exposures to chemicals released outdoors (far-field sources) with ex
posures to chemicals in consumer products applied directly or through indoor-environment exposure 
pathways (near-field exposures). The recognized absence of tools and exposure information is stimulating 
research to develop and improve near-field and far-field exposure science. Specifically, the seminal mod
el developed for simulating chemical transport in an indoor environment (Bennett and Furtaw 2004) has 
been revised to include exposure pathways for which external human exposures (intake fractions) (Shin et 
al. 2012) and internal exposures (estimates of whole-body concentrations) (Zhang et al. 2014; Webster et 
al. 2016) can be estimated. Furthermore, data and models are evolving to improve mechanistic under
standing of chemical releases and exposures indoors (Weschler and Nazaroff 2010, 2012; Little et al. 
2012). Exposure models for consumer products also are evolving and being evaluated for select chemicals 
(Young et al. 2012; Gosens et al. 2014; Delmaar et al. 2015; Dudzina et al. 2015). Exposure models and 
frameworks that combine far-field and near-field pathways for aggregate human exposure assessments are 
also being developed and applied (Isaacs et al. 2014; Shin et al. 2015; Fantke et al. 2016). 

EPA's ExpoCast project conducts research on and uses computational tools for high-throughput ex
posure estimation or "forecasting" to set testing or assessment priorities. The ExpoCast project combines 
various models and data sources to estimate exposures, which can then be compared with high-throughput 
ToxCast data and other sources of toxicity or bioactivity data. As a part of the ExpoCast exposure estima
tion, the Systematic Empirical Evaluation of Models (SEEM) framework includes calibration and evalua
tion of exposure-model estimates against chemical concentrations measured in or estimated from blood 
and urine samples from a group of nonoccupationally exposed US residents over the age of 6 years 
(Wambaugh et al. 2013, 2014)_2 Exposure-model predictions are compared with available biomonitoring 
data to estimate the uncertainty in the combined exposure-model calculations (Wambaugh et al. 2013). 
The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway chemicals 
(SHEDS-MM) for exposure-based priority-setting and screening has been revised for high-throughput 
capacity (SHEDS-HT) (Isaacs et al. 2014) and feeds into the SEEM framework. Other complementary 
high-throughput aggregate exposure-estimation models that combine existing and emerging tools (see, for 
example, Shin et al. 2015) can also be incorporated into the SEEM framework, and they are being ap
plied, evaluated, and refined in other contexts. 

Improving the amount and quality of the data that are needed to develop parameters for the compu
tational exposure tools is critically important; without such data, the applicability of the tools is limited. 
Some advances include updated exposure factors (EPA 20 ll) and the development of the Consumer 
Product Chemical Profile Database (Goldsmith et al. 2014) and the Chemical/Product Categories Data
base (Dionisio et al. 2015).3 Numerous quantitative structure-activity relationship (QSAR) models, quan
titative structure-property relationship (QSPR) models, and other computational tools for predicting 
chemical-property information-such as solubilities, partition coefficients, and degradation rates
continue to evolve. The applicability domains of existing tools for calculating chemical-property infor
mation require further examination and more explicit definition to ensure that the models are calibrated 
and applied within the same chemical space. Integrated testing strategies to obtain more high-quality 
measurements can then be strategically developed to expand the applicability domains of current QSAR 
models, QSPR models, and other tools used for property estimation. 

2Data are from the US National Health and Nutrition Examination Survey. 
3See http://actor.epa.gov/cpcat 
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Because of the extensive measurement-data gaps, the recent advances in computational tools for ex
posure science are expected to play a crucial role in most aspects of exposure estimation for risk-based 
assessments, not only high-throughput applications. Higher-tiered models that link exposure databases 
and spatial information (see, for example, Georgopoulos et al. 2014) and opportunities to combine and 
integrate measurements and models to characterize and quantify the source-to-receptor relationship more 
fully (see, for example, McKone et al. 2007) are being developed and applied. Exposure-model uncertain
ty and sensitivity analyses are useful computational methods that can be used to set priorities for expo
sure-science research systematically (Arnot et al. 2012; NRC 2012; Arnold et al. 2014). 

Personalized Exposure Assessment 

Behavior patterns that determine exposure routes, durations, and conditions combined with the vari
ation in environmental concentrations of stressors over space and time result in unique exposure patterns 
for individuals and populations. Exposure data that are needed to assess personal exposures can now be 
generated on various spatial and temporal scales with traditional and emerging methods. New opportuni
ties to measure exposures in and outside the body will help to characterize and quantify personal expo
sures to an array of stressors. Particularly notable are recent advances in the application of passive sam
pling techniques to determine internal human concentrations (for example, using silicone implants) (Allan 
et al. 2013a; Gilbert et al. 2015; O'Connell et al. 2015), external exposure concentrations integrated over 
time and space (for example, using silicone wristbands) (O'Connell et al. 2014a,b), and chemical concen
trations and chemical activities4 in media to which humans are exposed, such as foods (Allan et al. 2013b; 
Jahnke et al. 2014) and indoor air (Wetzel and Doucette 2015). Portable sensors for measuring particles 
and volatile organic chemicals are being refined and are providing valuable information on personal ex
posures, particularly in vulnerable populations (McGinn et al. 2016). Mobility-based exposure assessment 
that uses personal devices, such as cell phones, to provide GPS information, can be used to determine 
time and location of people relative to exposure levels determined from remote sensing information (Ad
ams et al. 2009; de Nazelle et al. 2013; Suet al. 2015). Consumer product and use databases and market 
research data can provide population and personal exposure information that can help to inform exposure 
assessment, for example (Goldsmith et al. 2014). All those emerging technologies and data streams will 
complement existing tools and techniques in the effort to obtain more comprehensive knowledge of the 
source-to-outcome continuum. 

Targeted and Nontargeted Exogenous Chemical Exposure Assessment 

Important advances in two complementary approaches for characterizing human exposure- target
ed and nontargeted analysis-are improving the accuracy and breadth of human and ecological exposure 
assessment (Fiehn 2002; Park et al. 2012; O'Connell2014a,b; Go et al. 2015; Mastrangelo et al. 2015; 
Sud et al. 20 16). Both approaches, whether focused on endogenous or exogenous chemicals, are common
ly referred to as metabolomics approaches.5 Targeted analysis focuses on selected chemicals for which 
standards and methods are available and identifies chemicals on the basis of mass spectrum, elution time, 
detector signals, or some combination of these measures. Targeted analysis has produced much of the ex-

4Chemical activity is related to the energetic state of a chemical, is a measure of the effective concentration of a 
chemical in a given exposure medium (Reichenberg and Mayer 2006; Mackay et al. 2011), and is closely related to 
the freely dissolved concentration. For example, chemical activity is an improved measure of exposure when inter
action with media constituents (such as particles in air and organic matter in water) effectively reduces the amount 
of chemical free to interact with a biological receptor (such as a human), often referred to as the bioavailable frac
tion. 

5As defined in Chapter 1 (see Box 1-1), metabolomics is assumed to include exogenous chemicals found in bio
logical systems in their umnetabolized forms. 
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posure data used in epidemiological studies and risk assessment. The US National Health and Nutrition 
Examination Survey and the Canadian Health Measures Survey are two extensive biomonitoring pro
grams that use targeted analytical techniques for exposure assessment (Needham et al. 2005; Calafat 
2012; Haines and Murray 2012). Although initially limited by throughput and a focus on single chemi
cals, small groups of chemicals (Casas et al. 2011; Mortensen et al. 2014), or modest-size chemical clas
ses (O'Connell et al. 2014b), targeted methods are emerging for quantitative analysis of hundreds of 
chemicals (O'Connell et al. 2015). Generally, there is a tradeoff between sensitivity and selectivity that 
imposes limitations on the number of chemicals that can be analyzed in single runs by using a single in
strument or method. Targeted analyses are limited to chemicals for which standards are available. Ac
cepted standards for identification and quantitation have been articulated for most analyte classes (such as 
metabolites and peptides) (Castle et al. 2006; Fiehn et al. 2006; Goodacre et al. 2007; Sumner et al. 2014), 
but these standards are inconsistently applied in practice. 

Targeted analytical methods for protein and DNA adducts have emerged as an alternative to direct 
measurement of chemicals in blood. When stable protein or DNA adducts can be easily measured and 
information on the rates of adduct formation and loss is available, adduct concentrations can be used as 
proxies for the time-weighted average exposure to the parent chemicaL Those approaches are particularly 
valuable for exposure assessment and exposure reconstruction for short-lived chemicals whose concentra
tions in blood and other biofluids might be very low and subject to high temporal variability. One exam
ple is the use of hemoglobin adducts of acrylamide and its metabolite glycidamide for accurate recon
struction of acrylamide exposure and its concentration in blood over time in humans (Young et al. 2007). 
Chemical-specific adducts of the carcinogens butadiene, formaldehyde, and acetaldehyde have emerged 
recently as metrics of exposure to these extremely short-lived chemicals (Swenberg et al. 2007; Swenberg 
et al. 2008; Moeller et al. 2013; Yu et al. 2015). The benefits of using stable adducts to measure exposure 
to short-lived chemicals include the ability to integrate exposure over time (that is, the adducts can serve 
as integrative measures of exposure because they are more stable) and biological relevance because of the 
proximity to a target site, such as DNA. Swenberg and co-workers have established highly sensitive 
methods for specific formaldehyde DNA adducts and pioneered methods for establishing the contribution 
of endogenous and exogenous formaldehyde to total internal exposure (Edrissi et al. 2013; Moeller et al. 
2013; Pottenger et al. 2014; Pontel et al. 2015; Yu et al. 2015). The studies highlight the utility of targeted 
analysis of adducts for exposure assessment and perhaps a potential for broad assessment of the adduc
tome (Gavina et al. 2014; Pottenger et al. 2014). 

Nontargeted analysis has emerged as an approach to provide qualitative information on the large 
portion of the exposome that is uncharacterized-a portion that includes bioactive endogenous peptides, 
exogenous chemicals, metabolites, lipids, and other biomolecules. It offers the ability to survey more 
broadly the presence of all chemicals in the environment and in biofluids regardless of whether standards 
and methods are available. The nontargeted approach trades selectivity for breadth and produces numer
ous unidentified analytical features. Comparing unidentified analytical features from large cohorts and 
correlating them with responses of interest in the cohorts can help to identify analytical features for fur
ther investigation (Burgess et al. 2015). Cheminformatics and computational chemistry can be used to 
identify chemicals with varying levels of confidence; nuclear magnetic resonance spectroscopy can be 
used to identify chemical structure with high accuracy. Accepted standards for identification of metabo
lites (Castle et al. 2006; Fiehn et al. 2006; Sumner et al. 2014) have not been routinely applied to nontar
geted approaches, so chemical matches to the analytical features is tentative and association between spe
cific chemicals and disease is uncertain. 

Nontargeted approaches are promising, but there are limitations in the use of data produced from 
nontargeted analyses that should be considered before collecting the data. For example, an unidentified 
analyte cannot be used to develop a mechanistic argument to support or refute a causal association be
tween the presence of the analyte and a clinical effect, it cannot be quantified in absolute terms, it cannot 
be subjected to toxicity testing, and it cannot be attributed to sources for purposes of exposure mitigation. 
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Although identifying all analytes is an important objective, reducing the number of analytes-to investi
gate, for example, on the basis of frequency in samples, membership in an important chemical class, and 
association with a clinical outcome-will be important until methods for identification of unknown ana
lytes become more efficient. 

Initial efforts to understand potential contributions of exogenous and endogenous exposure have led 
to important insights about the role of each and about potential limitations of analytical technologies. 
Rappaport and co-workers (2014) reported human blood concentrations of many chemicals, their sources, 
evidence of chronic-disease risks, and numbers of metabolic pathways. Blood concentrations of endoge
nous chemicals, food chemicals, and drugs were indistinguishable and spanned 11 orders of magnitude; 
blood concentrations of pollutants were on the average lower by a factor of about 1,000 (Figure 2-2). 
Although the findings cannot be generalized to all chemicals or all exposure scenarios, the blood
concentration ranges highlight the importance of using highly sensitive analytical instrumentation to char
acterize human exposure (Athersuch 2016; Uppal et al. in press). 

Risk assessment and mitigation of sources and risks all depend on knowing absolute quantities of 
specific chemicals; therefore, targeted analyses will continue to be the primary source of exposure infor
mation. Because the results of non targeted analyses provide only relative or qualitative exposures, they 
are not readily applicable to conventional risk assessment. However, when unidentified analytical fea
tures can be aggregated according to their toxicity or pharmacokinetic behavior, there will be new oppor
tunities to conduct hazard or risk assessments on the basis of similarity to chemicals whose toxicity is 
known. 

FIGURE 2-2 A survey of measured blood concentrations shows that for the selected chemicals concentrations of 
pharmaceuticals and naturally present endogenous chemicals are similar and are generally higher than concentra
tions of enviromnental contaminants. The findings highlight the importance of using highly sensitive analytical in
strumentation to characterize human exposure. Source: Rappaport et al. 2014. 
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Exposure Inference from -Omics Technologies 

-Omics technologies that quantify the abundance of biomolecules, such as proteins and transcripts, 
offer distinct and diverse applications for exposure assessment. In contrast with metabolomic approaches 
that quantify exposure to specific metabolites of endogenous and exogenous chemicals, proteomic and 
transcriptomic approaches provide global assessment of biological responses to exposure to multiple 
stressors. Those -omics approaches can provide biomarkers or biosignatures of response to chemical clas
ses, such as oxidants (Roede et al. 2013; Go and Jones 2014) and potentially genotoxic chemicals (Fenech 
and Bonassi 2011; Lovreglio et al. 2014; Kalemba-Drozdz 2015; Moro et al. 2015; Turner et al. in press). 
That particular application of -omics technologies, a key element of Wild's original vision of the expo
some (Wild 2005, 2012), is used to infer exposure to one or more chemicals on the basis of a mechanistic 
understanding of biological response to them. Some biomarkers of exposure can result from changes in 
the body that are induced by chemical exposure (for example, changes in metabolite or protein profiles), 
but these types of biomarkers commonly do not provide quantitative exposure information that can be 
used for risk estimation. The application of -omics technologies to infer exposure to classes of stressors is 
expected to grow. Although the initial utility will probably be in qualitative exposure inference and in 
assembling evidence on biological pathways, application should expand to more confident and more 
quantitative characterization of exposures to chemical classes or groups of stressors that produce the same 
biological effect, such as oxidation or inflammation. 

Novel Exposure Matrices for Exposure Reconstruction 

Assessment of occupational and environmental exposures will continue to rely on matrices for 
which there are established methods of collection, analysis, and interpretation. Those matrices include air, 
water, soil, food, blood, and urine. The expanding computational exposure-science infrastructure (Arnot 
et al. 2012; Shin et al. 2012, 2015; Wambaugh et al. 2013, 2014; Isaacs et al. 2014), which uses the tradi
tional data streams to construct population-level exposure assessments, will continue to drive the genera
tion of data on the traditional exposure matrices. 

Growing emphasis on near-field exposures (Stapleton et al. 2008; Shin et al. 2012; Wambaugh et al. 
2014) and on exposures during development, which is the focus of the Children's Health Exposure Re
source Centers of the National Institute for Environmental Health Sciences, is poised to drive exposure 
assessment toward new environmental and biological matrices and new approaches. For example, popula
tion-level exposure to hundreds of chemicals was recently shown to be dominated by near-field exposures 
from consumer-product and household use, not by far-field exposures that take place after chemicals are 
released into the outdoor environment (Shin et al. 2012; Wambaugh et al. 2014). Increased focus on cate
gorizing chemicals in consumer products and on assembling exposure data for use in exposure assessment 
is one immediate outcome of the recent studies. Continued efforts to measure and estimate concentrations 
in multimedia sources-such as indoor air, indoor surfaces, dust, and consumer products-are required to 
address uncertainty in near-field exposures and pathways. 

Characterization of exposures during the toxicologically sensitive period of fetal development has 
historically been limited to drawing inferences about maternal exposure through periodic maternal blood 
and urine measurements. Responding to the need to improve the characterization of fetal exposures to 
chemicals, researchers have turned to novel biological matrices, such as teeth, hair, nails, placental tissue, 
and meconium. The growth properties (the sequential deposition or addition of tissue) and availability of 
these biospecimens offer the opportunity to extract a record of exposure. For example, laser-ablation in
ductively coupled mass spectrometry has been used to reconstruct the timing of shifts in primates' diets 
that are associated with weaning by measuring calcium:barium ratios in tooth enamel (Austin et al. 2013). 
The same approach was recently shown to be promising for assessing in utero exposure to manganese. 
Arora et al. (2012) measured manganese concentrations in tooth dentine specific to the postnatal period 
and the second and third trimesters and showed a statistically significant relationship between house-dust 
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manganese concentrations and dentine manganese concentrations during the second trimester. Those au
thors and others (Andra et al. 2015; Palmer et al. 2015) have extended the methods to measure organic 
chemicals, including phenols and phthalates. Like teeth, hair forms in utero (third trimester), continues to 
grow, and potentially provides a temporal record of exposure. Initially used widely for forensic analysis 
of exposure to illicit drugs, hair has emerged as an important matrix for biomonitoring of metals and or
ganic chemicals, such as polybrominated diphenyl ethers (Aleksa et al. 2012; Liu et al. 2015a). Similar 
methods have been applied to fingernails (Liu et al. 2015a). 

Although the new matrices mentioned above have advantages and add valuable information to expo
sure assessment, they pose challenges in interpretation and application. A common challenge in the use of 
exposure measures based on the new biological and environmental matrices for quantitative exposure as
sessment is the need to understand how measured concentrations are related to measures of exposure tra
ditionally used to assess chemical toxicity or risk. Ideally, the new biomonitoring data can be supported 
by information regarding how measured concentrations in new matrices are related to conventional 
measures of internal exposure (serum concentrations, 11M) or external exposures (mg/kg-day or mmol/kg
day). New experimental data, such as chemical half-life in the body, and data related to events and pro
cesses of exposure, such as time since the exposure, that can inform various relationships and pharmaco
kinetic models will be useful in interpreting and reconstructing exposures by using the biomonitoring data 
(see, for example, Lorber and Egeghy 2011; Ritter et al. 2011; Quinn and Wania 2012; Wambaugh et al. 
2013; Aylward et al. 2014; Hays et al. 2015). The additional information regarding the exposures pro
vides confidence in using the measured biomonitoring data and supporting the exposure narrative. 

Physiologically Based Pharmacokinetic Models and Models for 
Translating Exposure Between Systems 

Physiologically based pharmacokinetic (PBPK) models have made substantial contributions to ex
posure assessment for more than 30 years. PBPK models have been applied effectively to characterize 
target-tissue exposure in test animals and humans, to characterize pharmacokinetic variability, and to ex
trapolate across species, life stages, exposure routes, and, most recently, ecosystem elements (MacLach
lan 2010; Weijs et al. 2012; Sonne et al. 2015). PBPK models now provide a common framework similar 
to environmental fate and transport models for more integrative exposure assessment and are applied 
more regularly to support aggregate (multiroute) exposure assessment (Esch et al. 2011; Abaci and Shuler 
2015), exposure reconstruction from biomonitoring data, and exposure translation between in vitro and in 
vivo test systems. 

The use ofPBPK models for exposure reconstruction, known as reverse dosimetry (Liao et al. 2007; 
Tan et al. 2007; Bartels et al. 2012; Hays et al. 2012; McNally et al. 2012; Yang et al. 2012; Grulke et al. 
2013), has led to important advances in the field of biomonitoring. Internal and external exposures can 
now be related and predicted on the basis of more limited sets of exposure information-for example, 
urine biomonitoring data (spot samples)-by applying principles of pharmacokinetics. The tools are used 
to calculate or estimate margins of exposure to chemicals on the basis of blood or urine spot samples and 
can be used to inform regulatory levels. New methods offer the ability to evaluate the influence of behav
ior and physiological variability on exposure distributions (Shankaran and Teeguarden 2014). 

The use ofPBPK models to characterize the influence of biochemical and physiological variability, 
particularly the role of polymorphisms of metabolizing enzymes in estimates of metabolism and variabil
ity (Beaudouin et al. 201 0; Bois et al. 201 0; Snoeys et al. 20 16), has grown substantially and will contin
ue to contribute to exposure assessment and risk assessment. Those advances help to predict pharmacoki
netics of potentially sensitive populations, such as preterm infants (Claassen et al. 2015) and children 
(Yoon et al. 2012). Recently, PBPK models have been applied to disentangle the role of physiological 
changes related to disease states from the effects of a chemical on disease and to examine the role of re
verse causation in published epidemiological studies (Verner et al. 2015; Wu et al. 2015). Accordingly, 
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PBPK models have emerged as new exposure tools capable of supporting inference in epidemiological 
studies. 

One of the major developments concerning PBPK models has been their use for translating expo
sures between test systems and human-exposure scenarios. In particular, the rapidly expanding use of 
high-throughput in vitro cell and cell-free systems to characterize the bioactivity of chemicals and materi
als, such as nanomaterials, has led to a need to translate in vitro exposure data into corresponding in vivo 
exposures in test systems and humans. Various terms have emerged to describe the applications to do 
so-for example, in vitro-in vivo extrapolation (IVIVE), reverse toxicokinetics (rTK), and reverse do
simetry. Each describes a kinetics-based and partitioning-based approach to translating exposures from 
one system of interest (in vitro) to another (in vivo animal or human), and all strive for mass balance. The 
use of PBPK models and similar biokinetic models of in vitro test systems has produced important meth
ods that can apply PBPK-modeling principles to a broad set of test systems (Rostami-Hodjegan 2012; 
Yeo et al. 2013; Campbell et al. 2014; Teeguarden et al. 2014; Martinet al. 2015), including microphysio
logical organ systems or human-on-a-chip systems (Esch et al. 2011; Abaci and Shuler 2015). However, 
without clear understanding of how exposures in the systems are related to in vivo exposures or human 
occupational or environmental exposures, their utility will remain limited, as has been the case for stand
ard in vitro cell-culture and cell-free systems. 

IVIVE models can be used to calculate human internal exposure concentrations of chemicals from 
data obtained in high-throughput in vitro systems (Kesisoglou et al. 2015). That approach uses hepatocyte 
cultures and other biotransformation systems to measure metabolic rate constants that are used to estimate 
human intrinsic clearance by the liver, a dominant route of metabolic and total clearance in humans. 
Clearance values can be obtained for different life stages or for populations that are resistant or vulnerable 
because of polymorphisms of metabolic enzymes. Renal clearance, another major elimination pathway, is 
often estimated by using data on glomerular filtration rates and measures of protein binding in serum 
(Rule et al. 2004; Rotroff et al. 201 0; Tonnelier et al. 20 12; Wetmore et al. 20 12). Other aspects of kidney 
function, such as tubular processing, can also influence clearance rates (Weaver et al. 20 16) and various 
biomarker concentrations. Metabolism in other tissues, which can be important, is not evaluated, and this 
is a limitation of the current state of these systems.6 Combining clearance with computational high
throughput methods for estimating average daily contact and intake rates makes it possible to predict in
ternal concentrations expected in humans. Those concentrations can then be compared with effect levels 
or no-effect levels from toxicity-testing systems. Addressing some limitations-such as not accounting 
for metabolism by other tissues, for the potential role of transporters, or for human variability-will be 
important next steps toward higher confidence in the application of the models. New approaches for better 
understanding of metabolic and genetic determinants of exposure are detailed in the next section. 

Key challenges in interpreting and applying IVIVE data include the quantification of relevant con
centrations that correspond to observed in vitro bioactivity from assumed nominal (administered) concen
trations (see Box 2-2 and Figure 2-3). A consistent approach for comparing and extrapolating results 
could be the use of the free (dissolved aqueous) concentration in the test system because this metric can 
be applied to cell-based or cell-free systems. The limitations complicate chemical comparisons for poten
cy and toxicity and reduce confidence in the application of in vitro bioassay data that are based only on 
nominal concentrations in risk-based assessments. Models to calculate in vitro concentrations that cannot 
be readily measured with traditional sample extraction and analytical techniques need to be developed, 
evaluated, and applied. Passive dosing and sampling techniques might prove useful in addressing the cur
rent analytical challenges and associated uncertainties in quantifying exposures in smaller in vitro test 
systems (Kramer et al. 2010). 

6The committee notes that over-prediction of serum concentrations of parent chemicals and under-prediction of 
potentially important metabolites is generally a possible outcome ofunderrepresenting metabolism. 
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BOX 2-2 Challenges in Estimating In Vitro Test Concentrations 

Evidence is accumulating that the prevailing view that stressor concentrations in the in vitro systems 
can be considered static and can be represented by nominal media concentrations is in many cases 
not valid (Gulden and Seibert 2003; Gulden et al. 2006; Teeguarden et al. 2007; Kramer et al. 2012; 
Armitage et al. 2014; Teeguarden et al. 2014; Groothuis et al. 2015). For example, nanomaterials, an 
emerging class of poorly studied toxicants, undergo transformations (agglomeration and dissolution) in 
liquid systems and size-dependent and density-dependent diffusion and sedimentation; each process 
affects delivery of particles to cells in culture. The processes have been shown repeatedly to affect cel
lular dose and can be expected to affect relative hazard ranking. Chemical concentrations in an in vitro 
test system can change as a function of the chemical properties, the test system, and time. Measured 
and estimated dissolved and cell concentrations can be orders of magnitude different from assumed 
(nominal) in vitro concentrations for various reasons, including chemical volatilization, differential distri
bution in the test system (Heringa et al. 2004; Kramer et al. 2012; Armitage et al. 2014), metabolism 
(Coecke et al. 2006; Groothuis et al. 2015; Wilk-Zasadna et al. 2015), and the reasons noted above. 

Headspaee 

FIGURE 2-3 (Left) Illustration of chemical distribution in an in vitro test system and (right) illustration of the 
chemical depletion factor (DF = Cnomina/Cdissolve.V in a typical cell-based in vitro test system as a function of chemical 
partitioning properties. The octanol-water partition coefficient (K0 w) characterizes chemical partitioning from water 
to nonaqueous constituents of the test system-such as cell membranes, proteins, plastic, and serum-and the air
water partition coefficient (KAw) characterizes chemical partitioning from water into air or head space. In this case, 
10% fetal bovine serum (FBS) is assumed present in the test system. The dotted lines (right) are the DFs correspond
ing to the chemical-property combinations and indicate the order-of-magnitude differences that can occur between 
assumed (administered or nominal) test concentrations typically used for dose-response calculations and the esti
mated dissolved (free) concentration in the test system. Source: Armitage et al. 2014. 

New Approaches for Assessing Biochemical and 
Physiological Determinants of Internal Exposure 

Metabolism, cellular transport, and other processes that control elimination and distribution of 
chemicals in organisms are essential considerations and important challenges in exposure science, data 
interpretation, and risk assessment. Metabolism is a key determinant of chemical residence time in the 
body and can lead to more or less production of toxic chemicals; thus, it plays an important role in the 
extent of exposure and chemical toxicity (Leung et al. 2012). Reliable measures of metabolic rates are 
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essential for understanding and characterizing differences in metabolism among species and between in 
vitro and in vivo test systems and for understanding the extent of variability and its effect on susceptibil
ity or resistance. Computational approaches (PBPK, rTK, and IVIVE) can be used to translate in vitro 
metabolic rates into estimates of chemical clearance (Wilk-Zasadna et al. 2015) and to quantify differ
ences among species and systems for exposure assessment. 

High-throughput in vitro assays can be used to investigate metabolism; they now cover many en
zymes and isoforms involved in chemical metabolism, including the phase I cytochrome P450 enzymes 
and a variety of phase II enzymes (admescope; Tolonen and Pelkonen 2015). Direct measures of activity 
obtained from the assays complement genomic approaches for characterizing the influence of polymor
phisms on metabolism. New proteomic tools that use chemical probes can also be used to measure meta
bolic activity of specific enzymes directly in tissue and cellular preparations (Cravatt et al. 2008; Sadler 
and Wright 2015). For example, recent publications (Crowell et al. 2013; Sadler et al. 2016) demonstrate 
that activity-based probes provide better measures of relative enzyme activity for individual enzymes than 
measures of transcripts or proteins and thus complement conventional metabolism assays. Other in vitro 
metabolism test systems, such as ones that use hepatocytes and liver spheroids, and computational models 
to translate metabolic rates and pathways to in vivo clearance continue to evolve (Fitzgerald et al. 2015; 
Hutzler et al. 2015; Liu et al. 2015b). Higher-throughput systems for measuring and interpreting metabol
ic rates in hepatocytes have been successful in extending our knowledge from pharmaceuticals to envi
ronmental chemicals (Wetmore et al. 20 14; Y oon et al. 20 14). However, increasing capacity to synthesize 
chemical standards and test materials will be essential if these approaches are to be successfully applied to 
the many chemicals in commerce. 

As basic hepatic-metabolism data grow, other limitations of the systems to predict chemical kinetics 
and internal exposures will become important. Extrahepatic metabolism-such as metabolism in the kid
ney, gastrointestinal tract, and lung--can be important but is not yet addressed in most extrapolations. 
Similarly, differences in metabolic competence between the cells used in vitro and the in vivo systems 
can affect the extent of metabolism, the metabolic pathways activated, and the metabolites produced (see, 
for example, Kolanczyk et al. 2012). Emerging tools that can evaluate potential metabolite production 
(Tolonen and Pelkonen 2015; Wilk-Zasadna et al. 2015) and the use of multiple in vitro metabolism sys
tems of varied complexity (Zhang et al. 20 12) that include more than one tissue or cell type are possible 
solutions to the challenges. QSAR models that can predict rates of metabolism and clearance in tissues, 
such as liver and plasma (Berellini et al. 2012; Hsiao et al. 2013), and in the whole body (Obach et al. 
2008; Wishart et al. 2008; Arnot et al. 2014) are also promising approaches for obtaining information on 
metabolism. 

Pharmacogenomic profiling has emerged as a valuable approach for characterizing individual and 
population variabilities in genes that influence absorption, distribution, metabolism, and elimination 
(ADME) of drugs and environmental chemicals. Variations in ADME processes are important sources of 
variability in internal exposure. Recent advances in sequencing technologies (De Wit et al. 2015; Heather 
and Chain 2015; McGinn et al. 2016) now offer unprecedented potential for rapid individual and popula
tion-level identification of single-nucleotide polymorphisms that affect metabolic, transport, and clear
ance processes that together influence individual internal-exposure profiles. Recently, the frequencies of 
polymorphisms in 1,936 proteins that have documented clinical significance for ADME processes were 
measured and characterized in a Thai population and compared with findings in other ethnicities 
(Jittikoon et al. 2016). That and other recent analyses that show greater diversity in polymorphisms in 
American blacks and other ethnicities (Li et al. 2014; Ortega and Meyers 2014) demonstrate the potential 
for nearly comprehensive assessment of polymorphisms of AD ME-related genes in individuals and popu
lations and for internal-exposure predictions on an individual basis. More comprehensive characterization 
of AD ME-related and other polymorphisms in populations and improved understanding of their function 
and relevance to exposure and toxicity will be valuable in addressing population variability for risk-based 
decision-making. The committee notes that compartmental and PBPK models for predicting the resulting 
effects on population distributions of serum concentrations have been used regularly but for only a few 
metabolic enzymes (EPA 2010). 
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Another important process to consider is cellular transport; transport proteins influence both tissue 
and intracellular concentrations. Pharmaceuticals and environmental chemicals are substrates for trans
porters (Fardell et al. 2011 ), and the importance of transporters in affecting internal chemical exposure at 
target sites is recognized (Wambaugh et al. 2014). QSAR models for predicting chemical interactions 
with transporters (Sedykh et al. 2013) and a variety of in vitro assays (Xie 2008) have been developed to 
support incorporation of transporters into determinations of internal exposure. 

Continued success in using the new tools described here for measuring and calculating biochemical 
and physiological determinants of internal exposure will improve exposure assessment and ultimately will 
support the successful integration of in vitro, computational, and in vivo approaches into risk assessment. 

CONFIDENCE LEVELS IN EXPOSURE INFORMATION AND ASSESSMENT 

Exposure data from traditional and emerging methods discussed above can be placed in categories 
spanning the continuum from source to target-site exposure (Figure 2-4) (NRC 2012). Exposure 
measures biologically closer to the site of action of the stressor can under some conditions have greater 
value for linking exposures to effects. For example, the relationship between soil concentrations of a 
chemical and effects in a population exposed to the soil might be obscured by individual differences in 
exposure rate, activity patterns, and metabolism. In contrast, individual blood or tissue measures of chem
ical exposure reflect the combined action of those processes and benefit from being more directly related 
to the event that initiates adverse effects: interaction of the chemical with a biological receptor (organelle, 
protein receptor, or DNA). However, soil and air measures of chemicals and biologics can be less con
founded sources of information for assessing source contributions to external exposure because fewer 
processes (absorption, metabolism, and human activity patterns) can obscure relationships between the 
measured exposure in blood or urine and the source. The committee cautions, however, that internal ex
posures are not universally better or universally more useful than external exposures for purposes of relat
ing exposures and effects, for example, in epidemiological studies. A long history shows the utility of 
measures of external exposure for epidemiology. In fact, external exposures might sometimes be superior 
to internal exposures, for example, when the two are proportional to one another and external measures 
are easier to acquire. Furthermore, external exposures might be the most biologically relevant when por
tal-of-entry effects, such as skin sensitization, are the focus. Exposure measures should be carefully se
lected by considering the strengths and limitations of external and internal measures of exposure and the 
purpose for which they will be used. Ideally, exposure data are available across the entire spectrum illus
trated in Figure 2-4, and approaches for connecting them quantitatively have been developed to enable the 
use of exposures at any point on the continuum. 

There is a spectrum of quality of exposure data from screening-level assessments based on limited 
information to multiroute, multisource exposure assessments to population-scale longitudinal exposure 
assessments that use validated exposure biomarkers. Important considerations for the application of expo
sure data in decision-making are the quality of the data and the context in which the data will be used; 
data quality can be determined by evaluating accuracy, integrity, suitability, transparency, and concord
ance of multiple lines of data or evidence (WHO 20 16). The degree of confidence that is required for ex
posure data or exposure assessment is balanced with the cost of data acquisition and determined by the 
decision context established in problem formulation. In some cases, screening-level exposure data that 
have greater uncertainty might have sufficient accuracy to support important screening-level decisions 
made by regulatory agencies and might provide the most cost-effective approach (WHO 2016; Wam
baugh et al. 2013, 2014). In those cases, transparency is essential for providing understanding and confi
dence in decisions that stem from exposure assessment; transparency can be obtained by carefully docu
menting and reporting data quality, suitability, and integrity (WHO 2016). The use of computationally 
derived exposure estimates that are based on sparse data is an example of possible applications. That ap
proach might be used to make initial decisions to set priorities among stressors for improved exposure 
assessment, toxicity assessment, or epidemiological assessment. The same data might also be useful for 
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FIGURE 2-4 Exposure measurements are made along multiple points in the source-to-outcome continuum. The 
value of exposure data for applications, such as source assessment and mitigation and assessment of public-health 
effects, might depend on location on the source-to-outcome continuum. Careful consideration should be given to 
selection of exposure measures by balancing cost, invasiveness, and relevance for the study. For example, although 
internal exposures might be directly related to the event that initiates adverse effects, external measures of exposure 
might be more relevant to portal-of-entry effects and have the benefit of being more cost-effective to collect. Source: 
NRC 2012. 

making initial decisions regarding new applications of a chemical or its inclusion in or removal from new 
or existing products. In some cases, extensive uncertainty, sensitivity, and variability analyses of expo
sure-assessment components might indicate that exposures of the magnitude necessary to cause effects 
fall outside the range of plausibility, in which case such exposure estimates might have sufficient certain
ty to support decision-making regarding potential risks. As the field moves toward obtaining exposure 
data on thousands of chemicals in commerce and wider use of cost-effective screening-level analyses, 
careful reporting of the quality of assessments and associated limitations-for example, through model 
evaluation and sensitivity analysis-will have high priority. As computational exposure-measurement 
tools are developed and used, their successful application in risk-based or exposure-based decision
making as described above will involve passing the same quality assessments applied to environmental 
measures of exposure, for example, by applying EPA or World Health Organization (WHO) guidance to 
evaluate models (WHO 2005; EPA 2009, 2016a). 

Guidance for evaluating exposure data and exposure assessments developed by WHO and EPA and 
published in the literature focuses more on determining data quality than on establishing confidence in 
integrating various data streams. For example, integrating emerging data streams (such as computational 
exposure data) with conventional data (such as those derived from blood and urine biomonitoring and air 
sampling) is not discussed. Figure 2-5 presents some general considerations for assessing quality of expo
sure data and for integrating multiple data types. The four attributes for judging the quality of exposure 
data outlined by WHO-appropriateness, accuracy, integrity and transparency-also apply to Figure 2-5, 
but there is additional consideration of the strength of agreement between measures and of how each 
measure is related to the others in the overall exposure narrative. Although computationally derived expo
sure estimates might be perceived as warranting less confidence than direct measures, consideration of 
factors related to appropriateness and accuracy might indicate that the computational estimates are of 
higher quality. For example, direct exposure measures that are made with analytical methods that have 
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not been validated, that are confounded by sample contamination, that are determined without accounting 
for external-exposure intake rates and half-lives, or that lack temporal resolution necessary for their appli
cation in some decision-making contexts might ultimately be less valuable than indirect or proxy 
measures that are based on a validated exposure metric. Similarly, computationally derived exposure es
timates might be useful for some decision-making contexts, particularly when they are based on extensive 
experimental data-including pharmacokinetics, total external exposure, and patterns of external expo
sure-and show mass balance throughout the system. Confidence in any exposure assessment is increased 
when there is concordance, consistency, or agreement between multiple methods of exposure assessment 
and is greatest when directly measured exposures, indirect measures of exposure, and computationally 
derived exposure estimates or simulations agree (McKone et al. 2007; Cowan-Ellsberry et al. 2009; 
Mackay et al. 2011; Ritter et al. 2011; Teeguarden et al. 20 13). Agreement between measured and pre
dicted data streams builds confidence in each method of determination. Convergence between exposure 
measurements (external and internal) and model simulation results (for example, overlap of concentra
tions or probability distributions of concentrations) indicate higher confidence in an exposure estimate 
and in resulting risk-based decisions. Although agreement between exposure measures might be a hall
mark of quality and of the ideal, multiple concordant measures of exposure are not required to establish 
levels of quality required for all decision-making contexts. 

Consideration of the level of quality and confidence in exposure assessment in the decision-making 
context will continue to be important, particularly as new exposure data streams emerge from personal 
sampling data and from use of new exposure matrices, such as bone, teeth, and hair. The potential for us
ing emerging exposure data streams is high, but without careful evaluation, comparison with other types 
of exposure-assessment data, and a consistent effort to relate measurements to the appropriate level of 
biological organization (for example, target site or source), confidence in their use or agreement on their 
best application might be difficult to obtain. 

Modifying Factors 

Temporal Resolution 
Temporal Coherence 
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FIGURE 2-5 Confidence increases with more complete characterization of the exposure pathway and associated 
exposure determinants. Confidence might be higher for direct measures of the stressor-for example, at the site of 
action-but if such measures do not consider important modifying factors, confidence might be higher for surrogate 
exposure measures or predicted exposure measures that do consider such factors. The greatest confidence occurs 
when there is concordance between multiple exposure-estimation approaches or between multiple exposure 
measures, especially when divergent exposure metrics are considered. The confidence that is required for exposure 
data and assessments should be determined by data-acquision costs and the decision context; the highest levels of 
confidence are not required for many decision contexts. 
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Guidance has been developed to foster confidence, transparency, and reproducibility in calculated 
data used for exposure and risk assessment. Specific guidance has been developed for QSAR models for 
predicting chemical properties and toxicity (OECD 2007), for environmental fate and exposure models 
(EPA 2009; Buser et al. 2012), and for pharmacokinetic models (McLanahan et al. 2012). As new expo
sure metrics emerge, it will be important to develop guidance for integrating the various exposure 
measures and to understand their value and relationships with each other. 

APPLICATIONS FOR EXPOSURE SCIENCE 

To provide practical guidance on the use of emerging exposure-science data streams for decision
making, the following sections describe applications expected to have near-term and lasting influence on 
exposure assessment and on risk-based decision-making (Box 2-3). Each application uses one or more of 
the advances presented earlier in this chapter to provide a new basis for decision-making, to refine expo
sure data, or to provide new forms of exposure data. 

Aligning Exposures Between Test Systems and Humans 

Comparison of biological responses across diverse experimental systems is nearly always an essen
tial step in risk assessment. For example, risk assessors are faced with aligning toxicity data that are based 
on disparate measures of exposure: nominal liquid concentrations or cell concentrations in in vitro sys
tems and air concentrations, inhaled amounts, or administered doses in rodent studies and human biomon
itoring studies. Specificity, sensitivity, and concordance of observed effects across the test systems under
lie the value and strength of evidence supporting conclusions about hazard and risk associated with 
exposure. To compare the responses from different test systems adequately, the exposures (concentra
tions) need to be expressed in consistent (comparable) units and with due consideration for the matrix in 
which the chemical is present. For example, a chemical concentration in whole blood that corresponds to 
an in vivo response can differ from the total concentration in an in vitro test system that corresponds to a 
related response, although the free (dissolved) concentrations in the aqueous phases in each system might 
be equaL Thus, the alignment of exposures in the systems is one important step in comparing exposure
response relationships across systems and evaluating concordance and consistency. As in vitro systems, 
organotypic, or co-culture systems augment or replace traditional animal studies, biological effects are 
compared over a more diverse array of assay systems and, from an exposure standpoint, over more types 
of exposure. For example, the most biologically sound comparison of biological effects shown in a cell
free assay, a cell-based assay, and an inhalation-exposure rodent study would involve comparisons of tar
get-site exposures across all three systems: free-liquid concentrations in the cell-free assay, free cell con
centrations in the cell-based assay, and free cell concentrations in the target cells of the rodent. As a prac
tical matter, measured free-liquid concentrations in the in vitro assays and serum concentrations in rodent 
assays or from human studies would typically be considered appropriate measures of exposure-based 

BOX 2-3 High-Value Applications for Exposure Sciences 

Aligning exposures between test systems and humans 
Improving exposure assessment for epidemiological studies 
Exposure-based screening and priority-setting 
Identifying new chemical exposures for toxicity testing 
Predicting exposure to support registration and use of new chemicals 
Identifying, evaluating, and mitigating sources of exposure 
Assessing cumulative exposure and exposure to mixtures 
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alignment of the biological effects. However, there are circumstances in which serum concentrations are 
not good surrogates for tissue dose-for example, when transport proteins facilitate the uptake to and ef
flux from the tissue (Koch and Brouwer 2012; Wambaugh et al. 2014). The committee emphasizes that 
for any metric used to align exposure concentrations between systems, one should consider system condi
tions that might influence the value or interpretation of the data. For example, is the chemical concentra
tion determined under steady-state or dynamic conditions or is the chemical ionic, in which case pH must 
be considered? 

Each experimental system and human exposure situation has a unique set of processes that control 
or influence the timing, duration, and extent of exposure at the site of action (see Figure 2-6). Many of the 
processes are biokinetic and measurable with conventional approaches. Characterizing the processes in 
each test system allows the measurement, calculation, or simulation of chemical exposure at a common 
site of action. Consistent metrics of exposure, such as free or cell concentration, represent a possible ideal 
for comparison across systems and do not have the limitations associated with nominal concentrations. 
The chemical-activity approach has been proposed for ecological risk assessment (Mackay et al. 2011; 
Gobas et al. 2015) because it can integrate various multimedia exposure data streams (measured and pre
dicted) and toxicity data streams (in vitro and in vivo) into a framework with consistent units and might 
be useful for human health evaluations. Other exposure metrics might be suitable for some decision con
texts if they are adequately justified on the basis of pharmacokinetics, physical chemistry, and biology of 
the end point of interest. 
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FIGURE 2-6 Alignment of exposures across experimental toxicity-testing systems can be achieved by understand
ing, measuring, and applying this information on the processes that control the time course of concentrations and 
delivery of chemicals and particles to target cells in each system. Common target-cell exposure metrics could be 
total or free concentrations, peak concentrations, or area under the concentration-time curve. 
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Alignment of exposures between systems can be completed under data-poor and data-rich condi
tions. High-throughput methods for estimating hepatic and renal clearance can provide data needed for 
estimating human serum concentrations of chemicals that can be compared with cell-culture concentra
tions. That approach reflects one extreme-the data-poor case-for which data limitations can be over
come by focused, efficient in vitro and computational methods. Recently, an example of alignment of ex
posures under data-rich conditions-those with data from in vitro assays, whole-animal studies, and 
human biomonitoring-was published for systemic effects. Human urine and serum time-course concen
tration data from multiple studies provided empirical pharmacokinetic data that showed a relationship 
between serum bisphenol A (BPA) concentrations and urine BPA concentrations (Teeguarden et al. 2011, 
2015; Thayer et al. 20 15). The empirical relationships were used to calculate the range of human serum 
concentrations expected in a population of more than 28,000 people on whom there were published bio
monitoring urine data. The resulting range of serum concentrations was compared directly with liquid 
concentrations in low-dose BPA cell-culture and aquatic studies (Teeguarden et al. 2013, 2015). Conclu
sions concerning the probability of biological effects in humans were drawn by aligning exposures across 
human biomonitoring and two divergent test systems-vertebrates and cell-culture systems-that used a 
measure of exposure proximal to target-tissue exposure. Although the role of protein binding was not ad
dressed in that example, the data and tools to do so for BPA and other estrogens have been developed for 
rodent test systems and humans (Plowchalk and Teeguarden 2002; Teeguarden et al. 2005) and in vitro 
test systems (Teeguarden and Barton 2004). 

A separate set of challenges has prevented widespread alignment of particle and nanoparticle expo
sures between in vitro and in vivo systems. The deposition of particles in the upper and lower airways of 
rodents and nonhuman primate toxicity-testing systems and of humans is governed by physical processes 
(gravity, diffusion, and impaction), breathing patterns, airway structure (size, branching pattern, and geome
try), and particle characteristics (size, shape, and density). Similar processes affect gravitational and diffu
sional transport and eventual particle deposition on target cells in liquid cell-culture systems and include 
agglomeration capacity; particle size, shape, density, and agglomeration size and density; media height; and 
diffusion (Teeguarden et al. 2007; Hinderliter et al. 2010; Cohen et al. 2014; DeLoid et al. 2014). Until re
cently, toxicity data on particles from in vivo and in vitro systems were compared on different exposure 
scales-for example, air concentrations and liquid cell concentrations (Sayes et al. 2007)-and this poten
tially obscured relationships between biological effects in the systems. More recently, direct measurement of 
target-cell doses has become more common. In addition, with the advent of computational tools that can 
capture the unique kinetics of particles in solution (Hinderliter et al. 2010) and of supportive experimental 
methods (Davis et al. 2011; Cohen et al. 2014), computational estimation of cellular doses in in vitro sys
tems is becoming more common. With similar tools for measuring or calculating lung-tissue doses of parti
cles after inhalation exposure (Anjilvel and Asgharian 1995; Asgharian and Anjilvel 1998; Asgharian et al. 
1999, 2001, 2006, 2012; Asgharian 2004; Asgharian and Price 2007), approaches that allow comparison of 
in vitro and in vivo models of experimental particle toxicity have emerged (Teeguarden et al. 2014). The 
consistency of observed effects between the in vitro and in vivo systems might be revealed by making com
parisons with a consistent, biologically relevant measure of exposure. For example, iron oxide nanoparticles 
were shown to cause expression of the same cytokines in macrophages in vitro and in mouse lungs in vivo 
when exposures were compared on a particle mass or cell basis. 

Research in and development of new methods and more frequent application of existing methods to 
produce consistent measures of biologically appropriate exposure for toxicity across various test and re
ceptor systems is a potentially high-value application for exposure science. 

Improving Exposure Assessment for Epidemiological Studies 

Causal inference based on epidemiological evidence can be strengthened when information on health 
outcomes is combined with clear measures of exposure at the biological site of action or a surrogate for the 
site of action (such as serum) that is temporally related to the causative biological events. Although that as
sertion is based on fundamental principles of pharmacology, it is not true that internal exposures are univer-
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sally better than external exposure for purposes of assessing associations or inferring causation. External
exposure measures have been and will continue to be sufficient, and in some cases superior to internal
exposure measures, for example, where portal-of-entry effects are involved or large population-scale expo
sure assessments are necessary and internal-exposure assessments are impractical. Reducing or eliminating 
exposure misclassification and broadening exposure assessment to identify new chemicals that might be 
causative agents or confounders of existing associations would substantially strengthen the interpretation of 
epidemiological studies and improve their value for public-health decision-making. 

Several advances in the field of exposure science are particularly well suited for improving exposure 
assessment for epidemiological studies. High-throughput targeted and nontargeted analytical-chemistry 
tools and new matrices for exposure assessment (such as hair, teeth, and nails) are together expected to 
offer more temporally relevant exposure assessment of many more chemicals and expand exposure as
sessment over the full life span. Emerging high-throughput computational-exposure models of external 
exposure will provide exposure estimates that complement those made through expanded biomonitoring 
programs. Personal biomonitors and sensor wristbands (O'Connell et al. 2014a,b) offer an unparalleled 
opportunity to characterize individual exposures and provide temporally and spatially resolved data for 
understanding patterns of exposure, variability, and the role of behavior and activity levels on exposure. 
PBPK models could improve exposure assessment by 

:::: Reconstructing exposures from limited biomonitoring samples on the basis of pharmacokinetic 
understanding (Tan et al. 2006, 20 12; Yang et al. 20 12). 

Translating external exposures or biomonitoring data into more biologically relevant internal ex
posures (Teeguarden et al. 2013). 

Reducing the likelihood of reverse causation in epidemiological studies by more clearly delineat
ing the sequences of chemical-induced physiological changes that lead to disease states (Verner et al. 
2015; Wu et al. 2015) 

:::: Accounting for population variability that is characterized directly or through the application of 
pharmacogenomics approaches (Teeguarden et al. 2008; EPA 2010; Ginsberg et al. 2010). 

The greater availability of internal-exposure information obtained from direct biomonitoring of hu
man populations or from a combination of computational tools would be of particular value by providing 
human exposure concentrations at the site of action (tissue or blood). Such information could be com
pared with measurements in animal and cell-culture studies and might enhance causal inferences derived 
from epidemiological studies. 

Exposure-Based Screening and Priority-Setting 

Several exposure-based priority-setting approaches that benefit from the emerging exposure-science 
tools and data streams have been developed. In an exposure-based approach, chemicals in the top expo
sure category are assigned a higher priority for additional tiered toxicological, hazard, or risk assessment 
than those in the low exposure category; this provides a reproducible, transparent, and knowledge-based 
framework to inform decisions for testing priorities (Egeghy et al. 2011; Wambaugh et al. 2013, 2014). 
The European Food Safety Authority and WHO have reviewed the threshold-of-toxicological-concern 
(TTC) approach as a screening and priority-setting tool that can be used for chemical assessments in cases 
where hazard data are insufficient and human exposure can be estimated (EFSA 20 16). The TTC ap
proach is used principally as a screening tool to assess low-dose chemical exposures and to identify those 
on which further data are necessary for assessing human health risk. 7 In some cases following certain re-

7The committee notes that TTC approach depends on the set of chemicals used to establish the toxicity distribu
tion that is used to derive the TTC value. The ability of the TTC approach to screen chemicals properly will depend 
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quirements, "exposure-based waiving" for toxicity testing or "exposure-based adaptation of information 
requirements" approaches can be considered under the European Registration, Evaluation, Authorisation 
and Restriction of Chemicals legislation (Vermeire et al. 201 0; Rowbotham and Gibson 2011 ). Exposure
based waiving has also been used to propose acceptable exposure levels determined on the basis of gener
alized chemical-toxicity data and without chemical-specific toxicity data. Such approaches might be use
ful in making initial decisions about the public-health importance of chemical exposures in lieu of com
plete exposure and hazard data. Within the bounds of uncertainty and variability of the data, some 
immediate decisions could be made about the low potential for risk posed by exposures below preselected 
"critical levels" (Vermeire et al. 201 0; Rowbotham and Gibson 2011 ). Cumulative exposures to chemi
cals in specific classes might move some chemicals up in priority-an outcome of improved exposure 
data. Structure-based alerts and TTCs can be applied in such screening contexts to complement the expo
sure-based decision-making process. EPA recently demonstrated integration of nontargeted and targeted 
chemical analysis of house-dust samples for exposure-based and bioactivity-based ranking of chemicals 
for further biomonitoring or toxicity testing as shown in Figure 2-7 (Rager et al. 20 16). 

Biomonitoring data and environmental-monitoring data on most chemicals in commerce are missing 
or insufficient for exposure-based decision-making. Application of advanced biomonitoring, personal 
monitoring, and computational exposure-science tools described in this chapter can support high
throughput screening-level exposure assessment and exposure-based priority-setting for later toxicity test
ing. Exposure models can be applied to screen large numbers of chemicals in commerce and set priorities 
among specific chemicals or chemical classes on which there are no or few toxicity-testing data 
(McLachlan et al. 2014). Chemicals that have predicted high concentrations in humans and environmental 
media can then be used to identify toxicity-data gaps and set priorities for toxicity-testing for risk-based 
applications. The committee notes that priority-setting based only on exposure might assign a lower prior
ity to chemicals that might be given a higher priority on the basis of toxicity or risk. 
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FIGURE 2-7 Data from nontargeted and targeted analysis of dust samples were used with toxicity data to rank 
chemicals for further analysis and testing. Source: Rager et al. 2016. Reprinted with permission; copyright 2016, 
Environment International. 

on whether the toxicities of the chemicals of interest are well represented by the toxicities of the chemicals used to 
establish the distribution. 
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Translation of high-throughput data into risk-based rankings is an important application of exposure 
data for chemical priority-setting. Recent advances in high-throughput toxicity assessment, notably the 
ToxCast and Tox21 programs (see Chapter 1), and in high-throughput computational exposure assess
ment (Wambaugh et al. 2013, 2014) have enabled first-tier risk-based rankings of chemicals on the basis 
of margins of exposure-the ratio of exposures that cause effects (or bioactivity) to measured or estimat
ed human exposures (Wambaugh et al. 2013, 2014; Wetmore et al. 2013, 2014; Shin et al. 2015). Build
ing on work by Wetmore et al. (2012) and Rotroff et al. (2010), Shin et al. (2015) demonstrated a high
throughput method for screening and setting priorities among chemicals on the basis of quantitative com
parisons of exposure data with in vitro bioactivity data (bioactivity quotients); this is similar to the mar
gin-of-exposure approach used in risk priority-setting. They used human intake rates estimated with com
putational exposure models and toxicokinetic models for the in vitro-in vivo extrapolation of ToxCast 
toxicity data and identified 38 of 180 chemicals for which total estimated exposures equaled or exceeded 
the estimated oral dose expected to result in blood concentrations that cause a 50% response in an in vitro 
toxicity-testing system. Population variability due to differences in metabolic capacity was incorporated 
into the process (Wetmore et al. 2014). Screening-level exposure assessment was used to establish mar
gins of exposure for that group of chemicals for purposes of priority-setting. The committee notes, how
ever, that limitations of such analyses (see section "New Approaches for Assessing Biochemical and 
Physiological Determinants of Internal Exposure" above) need to be taken into account. Although expo
sure estimates that exceed in vitro effect estimates might not be conclusive evidence of risk and exposures 
that fall below in vitro activities might not be conclusive evidence of no risk, the committee sees the po
tential for the application of computational exposure science to be highly valuable and credible for com
parison and priority-setting among chemicals in a risk-based context. 

Human-exposure data on a much larger suite of chemicals than is now available would provide im
portant new data for guiding selection of chemicals and exposure concentrations for hazard testing and 
mechanistic toxicology. The rapid expansion and use of high-throughput in vitro methods for hazard as
sessment and mechanistic studies presents a growing opportunity to test chemicals for bioactivity at hu
man-exposure levels-levels lower than those typically used in traditional toxicity-testing studies. In vitro 
test systems-which are less subject to statistical-power limitations, are less expensive, and have fewer 
ethical considerations than whole-animal studies-might be better suited for testing exposures lower than 
those in traditional animal studies. Recent animal studies, however, provide useful examples of applying 
human exposure information to in vivo test systems. For example, recent studies have included exposures 
at or near those experienced by humans in animal-testing protocols for genistein and synthetic estrogens 
(NTP 2008; Delclos et al. 2009, 2014; Rebuli et al. 2014; Hicks et al. 2016). For those animal studies, 
exposures were selected on the basis of measured serum concentrations obtained in pilot animal studies, 
values estimated with pharmacokinetic models, and measured or estimated serum concentrations in hu
mans. The use of target-tissue exposures or biologically relevant accessible proxies, such as serum, for 
selecting can in some cases be of greater relevance than the use of external exposure measures. Thus, 
there is an opportunity to apply many of the new tools described in this chapter-expanded biomonitor
ing, new biological matrices, and high-throughput computational exposure models-as a guide for the 
selection of exposures for use in toxicity testing (Gilbert et al. 2015). 

Identifying New Chemical Exposures for Toxicity Testing 

The totality of exposure that makes up the exposome includes registered chemicals that are used in 
commerce, their environmental and metabolic degradation products, and endogenously produced chemi
cals. Traditionally, hazard-testing paradigms focus on satisfying regulatory needs for supporting product 
registration and contain guidelines for testing commercial chemicals, not their degradation products, me
tabolites, or similar chemicals produced endogenously. Identification of chemicals that make up the latter 
groups of untested chemicals has become a key goal of federally funded exposure-science programs, such 
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as the Children's Health Exposure Analysis Resource. Owing to advances in high-throughput nontargeted 
analysis (Fiehn 2002; Park et al. 2012; Go et al. 2015; Mastrangelo et al. 2015; Sud et al. 2016), exposure 
science is in a more effective position for discovery-based exposure assessment. Combined with envi
ronmental-degradation studies to identify novel chemicals, higher-throughput targeted analytical methods 
also contribute to overall exposure discovery for toxicity testing. For example, researchers in the Oregon 
State University Superfund Research Program recently discovered novel oxygenated and nitrogenated 
polycyclic aromatic hydrocarbons produced by conventional remediation methods and have subjected 
these environmental degradation products to toxicity testing (Knecht et al. 2013; Chibwe et al. 2015; 
Motorykin et al. 2015). In collaboration with academic scientists, EPA (Rager et al. 2016) recently 
demonstrated a workflow for nontargeted analysis of house dust with a transition to targeted analysis 
(measurement of specific target analytes) for ToxCast chemicals and use of frequency of detection infor
mation on chemicals as exposure data for priority-setting shown in Figure 2-8 below. The committee sees 
the use of nontargeted and targeted analysis as one innovative approach for identifying and setting priori
ties among chemicals for additional exposure assessment, hazard testing, and risk assessment that com
plements the current hazard-oriented paradigm. 
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FIGURE 2-8 Workflow for nontargeted and targeted analysis of the house-dust expo some for chemical priority
setting and testing. Abbreviations: DSSTox-MSMF, Distributed Structure-Searchable Toxicity Database-Mass Spec
troscopy Molecular Formula; LC-TOF /MS, Liquid chromatography time-of-flight mass spectroscopy; and MS, mass 
spectrometry. Source: Rager et al. 2016. Reprinted with permission; copyright 2016, Environment International. 
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Predicting Exposure to Support Registration and Use of New Chemicals 

About 1,000-2,000 chemicals are introduced into commerce each year (EPA 2004). For newly in
troduced chemicals, exposure assessment means forecasting likely environmental concentrations or total 
daily human exposures resulting from expected uses and is not a regular part of the decision-making pro
cess. The case of methyl tertiary-butyl ether, a gas additive introduced without fate and transport calcula
tions and later found to be widely distributed in the environment, is a poignant example of the value of 
predictive exposure modeling (Davis and Farland 2001). A recent NRC report, A Framework to Guide 
Selection of Chemical Alternatives, found that despite the known importance of exposure, many frame
works for selecting chemical alternatives downplay its importance and focus on inherent hazards posed by 
chemicals (NRC 2014). The committee that prepared the report recommended an increased emphasis on 
comparative exposure assessment and stated that inherent hazard should be the focus only in cases where 
the exposure routes and concentrations of the chemical of concern and its alternatives are not expected to 
differ substantially; that is, equivalent exposures should not be automatically assumed. And, it recom
mended greater reliance on physicochemical data and modeling tools, when high-quality analytical data 
on exposure are unavailable, to aid in predicting the partitioning of contaminants in the environment and 
the potential for their persistence, bioaccumulation, and toxicity. Although approaches that are based on 
both hazard and exposure data are preferred, approaches that are based principally on exposure or hazard 
data will continue to be valuable depending on the decision context. 

Tools to predict chemical properties (environmental or tissue-partitioning properties), stability (deg
radation and metabolism half-lives), and proposed use scenarios can be used to set parameter values for 
exposure models that are used to predict concentrations in environmental media and humans, over life 
spans, and on local and national scales. The estimated concentrations can guide selection of toxicity
testing exposures and can be compared with emerging toxicity data for risk-based assessments. Green
chemistry modeling initiatives can be applied to prescreen candidate chemicals according to the likeli
hood of biodegradation (Boethling 2011). Candidate chemicals can also be screened by applying more 
comprehensive methods that consider environmental fate and transport and various chemical use scenari
os (release pattern and quantities) (see, for example, Gama et al. 2012). Confidence in the prescreening 
methods will be greatest when the models and tools cover the applicability domain of the chemicals that 
are being evaluated and when the tools have already been shown to be effective in predicting fate and 
transport of chemicals that have similar properties (for example, structural similarity or similar use cate
gories). Hence there is a need to test and evaluate exposure modeling tools and data streams systematical
ly with existing commercial chemicals to foster confidence in applying the same and emerging tools for 
new premarket chemicals. 

Identifying, Evaluating, and Mitigating Sources of Exposure 

For chemicals that have multiple relevant exposure pathways, it can be challenging to identify and 
rank exposure sources for mitigation. Exposure models can be used to reconstruct and identify the 
sources, behaviors, and pathways that are driving exposures to a particular stressor. Good examples of 
emerging computational exposure tools that can be used to trace exposures to sources are exposure mod
els for consumer products (Gosens et al. 2014; Delmaar et al. 2015; Dudzina et al. 2015) and exposure 
models and frameworks that combine far-field and near-field pathways for aggregate human exposure 
assessments (Isaacs et al. 2014; Shin et al. 2015). For example, Shin et al. (2014) combined exposure 
models and human-biomonitoring data for nine chemicals to estimate the proportions of total production 
volumes that are used in selected use categories that correspond to exposure pathways. The models can be 
used to develop targeted strategies to reduce or virtually eliminate exposures to a particular stressor. For 
some chemicals, such as those used in pharmaceuticals and personal-care products, the dominant expo
sure pathways and chemical use rates are relatively obvious, and source mitigation, if necessary, might be 
relatively straightforward. 
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The combination of sensor technologies, including personal sensors, with GIS data systems offers 
new capabilities to identify sources of exposure. Personal sensors-for example, cell-phone-based sulfur 
oxide and nitrogen oxide sensors-use native GIS systems to collect real-time exposure data, which can 
be used to identify locations with high exposures and the source locations that contribute to the exposures. 
Remote sensing can identify high-exposure locations and source locations on a regional or population 
scale by mapping pollutant concentrations and identifying exposure patterns that might be related to 
sources. 

Some chemicals and materials are poorly degraded and persist in the environment long after produc
tion and use are stopped. Some of the highly persistent chemicals also have long residence times in the 
human body. It can take years or decades for exposures to decline substantially after regulatory action is 
initiated. Accordingly, highly persistent chemicals that show unacceptable risk should have high priority 
for mitigation. Models and supporting experimental studies that screen for rates of chemical degradation 
in environmental media and overall persistence in the environment and in humans can be used to identify 
persistent chemicals before commercial use and prevent or mitigate potential exposure by finding alterna
tives. 

Emerging exposure-assessment tools can also be used to mitigate sources of exposure to chemicals 
that cannot be identified confidently. Specifically, nontargeted analysis of environmental samples-air, 
dust, water, and soil-can be combined with analysis of ecological or human biomonitoring samples to 
select analytical features that represent internal exposures of potential concern. Geographical mapping of 
relative concentrations or detection frequency in environmental and human samples can lead to source 
identification that might in turn help to identify the chemical classes. 

Assessing Cumulative Exposure and Exposure to Mixtures 

Humans, animals, plants, and other organisms are exposed to numerous stressors that vary in com
position and concentration over space and time. For the most part, traditional toxicity testing has been 
conducted largely on single chemicals, so there are important uncertainties in assessing potential short
term and long-term effects of exposures to a mixture. That issue is a well-recognized concern for chemi
cal assessment. With advances in exposure data streams and the potential for high-throughput toxicity 
screening, there are opportunities to address the uncertainty related to potential effects of mixture expo
sures better. Measurements obtained from human tissue and from environmental media to which humans 
are exposed can be used directly or indirectly to formulate environmentally relevant concentrations of 
mixtures for toxicity screening and testing. For example, internal concentrations of persistent organic pol
lutants from in vivo exposure of humans (silicone implants) were used to determine and test mixture tox
icity in in vitro assays (Gilbert et al. 2015). It is also possible to use environmental-monitoring data (sam
pled water concentrations) to formulate exposure mixtures for toxicity testing (Allan et al. 2012), 
including approaches that consider population variability in responses to environmentally relevant chemi
cal-mixture concentrations (Abdo et al. 2015). The substantial advances in analytical chemistry noted in 
this report are producing more complete data on the extent of cumulative exposure to chemicals. Personal 
sampling devices, such as wristbands and air-sampling devices, provide data on complex cumulative ex
posures of individuals. -Omics tools appropriate for measuring the aggregate biological response to cumu
lative exposures to chemical classes that act through similar mechanisms can be combined with measures 
of real-world cumulative exposures to assess the effects of cumulative exposures more comprehensively. 
Aggregate-exposure model calculations for individual chemicals could be combined to obtain estimates of 
cumulative exposures to mixtures, for example, by using models of exposure to consumer products that 
are supported by databases of chemical concentrations in the product and product-use rates. The expo
sure-model calculations could be used to address mixture exposures and potential toxicity; this approach 
would require mixture-toxicity data or mixture-toxicity models for risk-based assessment. For that case, 
estimating exposure to a mixture of chemical stressors for risk-based assessments is theoretically possible. 
The reliability of and confidence in the exposure calculations require further evaluation, and methods for 
including metabolites and nonchemical stressors in cumulative risk-based evaluations are also required. 
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CHALLENGES AND RECOMMENDATIONS FOR ADVANCING EXPOSURE SCIENCE 

A principal objective of improving exposure science is to build confidence in exposure estimates by 
addressing or reducing uncertainty in the estimates used to support risk-based decision-making. That ob
jective is best met by developing and further integrating monitoring, measurement, and modeling efforts 
and by harmonizing exposures among test systems, the multimedia environment, and humans. Incremen
tally increasing the number of chemicals included in monitoring programs can help in evaluating and re
fining exposure models and in developing new approaches to integrate exposure data and constitutes an 
initial and pragmatic path. However, increased environmental monitoring alone will not be sufficient to 
improve exposure science. Interpreting the monitoring data and appropriately applying exposure data in 
risk-based evaluations will require continued complementary development and evaluation of exposure
assessment tools and information, such as fate and transport models, PBPK models, and data on chemical 
quantity and use, partitioning properties, reaction rates, and human behavior. 

In this section, challenges and recommendations to advance exposure science are discussed further. 
The points include some guidance initially presented in the ES21 report and some new, more pragmatic 
points, specifically related to the application of exposure science to risk-based evaluations. The points 
build on the advances and applications detailed in this chapter, which present key development opportuni
ties for the field recommended by the committee. Generally, the recommendations and challenges cover a 
continuum: preparation of infrastructure, collection of data, alignment of exposures between systems, 
integration of exposure data, and use of data for priority-setting. The ES21 Federal Working Group (EPA 
20 16b) is particularly well-positioned to coordinate and support the recommendations outlined below by 
further strengthening federal partnerships for the efficient development of exposure-science research and 
by engaging with other stakeholders to address the challenges that face the development and application 
of exposure information for risk-based evaluations. The committee notes that several recommendations 
below call for developing or expanding databases. In all cases, data curation and quality evaluation should 
be a routine part of database development and maintenance. 

Expand and Coordinate Exposure Science Infrastructure to Support Decision-Making 

Challenge: A broad spectrum of disciplines and institutions are participating in advancing exposure 
methods, measurements, and models. Given the many participants in exposure science, most information 
is fragmented, incompletely organized, and not readily available or accessible in some cases. Thus, the 
full potential of the existing and emerging information for exposure-based and risk-based evaluations 
cannot be realized. The committee emphasizes that the rapid growth in exposure science presents unprec
edented opportunities for more efficient, complete, and holistic use of exposure information, especially if 
the information can be well organized into a readily accessible format. 

Recommendation: An infrastructure for exposure information should be developed to organize and 
coordinate better the existing and rapidly evolving components of exposure science and ultimately to im
prove exposure assessment. The infrastructure should be organized by using conceptual and systems
based frameworks that are commonly used in exposure assessment and should facilitate the generation, 
acquisition, organization, access, evaluation, integration, and transparent application and communication 
of exposure information. The infrastructure might best be comprised of an Internet-based network of da
tabases and tools rather than one database and could expand on existing infrastructure and databases. 
Guidance for generating, evaluating, and applying exposure information (WHO 2005; EPA 2009) should 
be expanded to enable inclusion of data in the databases. 

Recommendation: Coordination and cooperation should be encouraged among the large network of 
agencies, institutions, and organizations that produce and use exposure information for different but ulti
mately connected and complementary objectives. Cooperation should increase the efficiency with which 
the infrastructure described above is developed, and a common ontology of exposure science (Zartarian et 
al. 2005; Mattingly et al. 2012; EPA 2016b) should continue to evolve to facilitate interdisciplinary com
munication in the development and application of exposure information. 
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Identify Chemicals or Other Stressors and Quantify Sources and Exposures 

Challenge: Nontargeted analysis in environmental and human media indicates that there are many 
unknown chemicals in complex uncharacterized mixtures to which humans are exposed. Analytical meth
ods and standards are not available for most chemicals and degradation products, and this hinders the ca
pacity to identify and quantify chemical exposures. Furthermore, uncertainty in source information
product composition, chemical quantity, use, and release rate-is a major obstacle to exposure estimation 
for most chemicals. 

Recommendation: Current efforts to obtain and organize information on chemical quantities in and 
rates of release from products and materials, particularly consumer products and materials in the indoor 
environment, should be expanded substantially. Curated databases that contain analytical features that can 
be used in chemical identification should be expanded, and increasing the availability of analytical stand
ards for chemicals and their degradation products should have high priority. Ultimately, the capacity to 
conduct targeted and nontargeted analyses to identify and quantify new and existing chemicals and mix
tures in environmental media and humans should be increased. 

Improve Knowledge of Processes That Determine Chemical Fate in Systems 

Challenge: Understanding the influence of processes that control the fate, transport, and ultimately 
concentration of chemicals in environmental compartments and in animal and cell-based test systems is 
essential for characterizing and predicting exposures. Information on system properties, processes, and 
transformation pathways that contribute to chemical exposure is nonexistent, incomplete, and incon
sistent, and this limits the capacity for more comprehensive, quantitative exposure-based and risk-based 
evaluations. 

Recommendation: Databases of chemical properties and information on rates and processes that 
control chemical fate in vitro, in vivo, and in environmental systems should be developed. Information is 
needed, for example, on partitioning (distribution) coefficients, degradation and transfer rates, and meta
bolic and environmental transformation pathways. Information might be obtained through experiments or 
modeling. 

Recommendation: Methods for measuring and predicting chemical transformation pathways and 
rates in environmental media, biological media, and biological test systems should be developed and ap
plied. The methods should be used to quantify human exposures to chemical mixtures (parent chemicals 
and metabolites) over time and to interpret results from test systems in the context of actual human expo
sures. In particular, knowledge of environmental, human, and test-system properties and conditions that 
influence exposures should be improved. Human pharmacokinetic data on metabolism, chemical trans
porters, and protein binding should be generated for chemicals in consumer products and food-related 
applications to improve the interpretation of human biomonitoring data from urine, blood, and emerging 
matrices. 

Align Environmental and Test-System Exposures 

Challenge: Aligning environmental exposures and information obtained from experimental systems 
is a critical aspect of risk-based evaluation and is required for improving environmental epidemiology. 
Various units of quantification, such as administered or unmeasured dose, are often applied, and assump
tions, such as steady-state or equilibrium conditions, are made. However, pharmacokinetic and fate pro
cesses and other factors often confound the interpretation and translation of exposure information be
tween humans and the environment and experimental systems. 

Recommendation: Concentrations in the test-system components should be quantified over time by 
measurement, which is preferred, or with reliable estimation methods. Methods and models that explicitly 
translate quantitative information between actual exposures and test-system exposures should be devel
oped and evaluated. 
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Recommendation: Chemical concentrations that reflect human exposures as derived from biomoni
toring measurements or from predictive exposure models should be considered when designing testing 
protocols for biological assays. Improving knowledge of processes that determine chemical fate in biolog
ical and test systems will be necessary to meet this recommendation. 

Integrate Exposure Information 

Challenge: Integration and appropriate application of exposure data from environmental media, bi
omonitoring samples, conventional samples (blood and urine), and emerging matrices (hair, nails, teeth, 
and meconium) is a scientific, engineering, and big-data challenge. The committee emphasizes that inte
gration of measured and modeled data is a key step in developing coherent exposure narratives, in evalu
ating data concordance, and ultimately in determining confidence in an exposure assessment. 

Recommendation: New interdisciplinary projects should be initiated to integrate exposure data and 
to gain experience that can be used to guide data collection and integration of conventional and emerging 
data streams. The projects might start as an extension of existing cooperative projects among federal and 
state agencies, nongovernment organizations, academe, and industry that focus on integrating measure
ments and models for improved quantitative exposure assessment. High priority should be placed on ex
tending existing (EPA, CDC, and WHO) guidance on quality of individual exposure data and assessments 
to include weighing and evaluating the quality of integrated experimental and modeled information from 
multiple matrices and data streams. 

Determine Exposure-Assessment Priorities 

Challenge: All the many uses of exposure data-from selection of chemicals for use in new prod
ucts to risk-based decision-making to exposure ranking-require exposure data, often for thousands of 
chemicals, over time and space. Whether or not analytical methods are available for the chemicals, the 
resources and time that are required for direct measures of exposure are not available, and resource
intensive, high-confidence exposure measurements might not be necessary in some cases. A key chal
lenge for exposure science is how best to focus resources on the highest-priority chemicals, chemical 
classes, mixtures, and exposure scenarios. 

Recommendation: Continued development of computational and experimental tools that maximize 
the value of existing knowledge for estimating exposure should have high priority. Those approaches 
might initially focus on selected near-field exposures that are known to be important, on chemical classes 
that are of high interest because of data on biological effects, or on other objectives, such as exposure 
ranking of members of a chemical class that are being investigated for use in new products. 

Recommendation: Continued development of approaches for exposure-based priority-setting that 
use uncertainty analysis to establish and communicate levels of confidence to support decision-making 
should be encouraged. The need to improve models or data that are used for priority-setting should be 
evaluated on the basis of the level of uncertainty and the tolerance for uncertainty in the decision-making 
context. Uncertainty and sensitivity analyses should guide selection and priority-setting among data gaps 
to be filled. 
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3 

Advances in Toxicology 

The decade since the publication of Toxicity Testing in the 21st Century: A Vision and a Strategy 
(NRC 2007) has seen continued advances in an array of technological and biological tools used to under
stand human function and disease at the molecular leveL Some advances were initially catalyzed by the 
Human Genome Project, which of necessity required technological innovations and large-scale collabora
tions to reach the ultimate goal of mapping the sequence of DNA. Other developments came from ad
vances made by the pharmaceutical industry to screen for chemicals that have specific biological func
tionality but minimal off-target effects. As a result of those advances, an era of big-data development and 
of public access and data-sharing has arrived with ever-increasing data-storage capacity, computational 
speed, and open-access software. Research has also become more multidisciplinary; project teams today 
often include geneticists, toxicologists, computer scientists, engineers, and statisticians. 

A number of advanced tools can now be used in toxicological and epidemiological research; some 
examples are listed below. 

:::J Large banks of immortalized cells that are derived from lymphocytes and collected from different 
populations worldwide are available for toxicological research. 

Genetically diverse mouse strains have been created by a multi-institution collaboration (the 
Complex Trait Consortium; Threadgill and Churchill2012) and are available for medical and toxicologi
cal research. They have been fully genotyped because of the relatively low cost of sequencing today, and 
the sequence information is publicly available. 

Microarrays and next-generation RNA sequencing can reveal postexposure changes in the simul
taneous expression of large numbers of genes (the transcriptome ). Technologies are also now available to 
profile the epigenome (epigenetic changes, such as methylation and histone modifications), the proteome 
(proteins present in the cell), and metabolome (small molecules). 

Large compilations of a wide variety of biological data are publicly available, as is software for 
data access, interpretation, and prediction. Text-mining tools applied to scientific-literature databases pro
vide approaches for developing hypotheses on relationships between chemicals, genes, and diseases. 

:::J Automated systems that use multiwell plates provide a high-throughput platform for measuring a 
wide array of effects in cells and cellular components in response to chemical exposures. Automated, 
multiwell testing can also be applied for rapid testing of zebrafish, vertebrates that are relatively genet
ically homologous with humans. 

:::J Computational advances have enabled the development of chemical-structure-based methods for 
predicting toxicity and systems-biology models for evaluating the effects of perturbing various biological 
pathways. 

Some of the advanced tools could be used to address issues in toxicology and ultimately risk as
sessment (see Chapter 1, Box 1-3). Some of the general risk-assessment questions to which the tools 
could be applied are the following: 

:::J Planning and scoping: Which chemicals should undergo comprehensive toxicological evaluation 
first (that is, how should priorities be set among chemicals for testing)? 

:::J Hazard identification: What adverse effects might a chemical have? For example, could it pose a 
carcinogenic risk or affect kidney or reproductive function? If a data-sparse chemical has a structure or 
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biological activity that is similar to that of a well-studied chemical, can the same types of toxicity be as
sumed and, if so, at similar exposures? Are cellular-assay responses adaptive (or inconsequential) or har
bingers of adverse effects in humans? Does the chemical operate through the same pathways or processes 
that are associated with cancer, reproductive toxicity, or other adverse human effects? 

:::J Dose-response assessment: How does response change with exposure? At what exposures are 
risks of harm inconsequential? Is there a threshold exposure at the population level below which there is 
no adverse effect? 

Mixtures: What are the hazards and dose-response characteristics of a complex mixture? How 
does the addition of a chemical to existing exposure contribute to risk? 

:::J Differential susceptibility and vulnerability: Are some populations more at risk than others after 
exposure to a specific drug or environmental chemical? For example, are some more susceptible because 
of co-exposures, pre-existing disease, or genetic susceptibility? Are exposures of the young or elderly of 
greater concern? 

Those risk-assessment questions provide the backdrop for considering the recent advances in toxico
logical tools. Information obtained with the new tools can advance our understanding of the potential 
health effects of chemical exposures at various points along the exposure-to-outcome continuum, shown 
in Figure 3-1 below. The starting point along the continuum is the transformation of external exposure to 
internal exposure, which was discussed in Chapter 2 of this report (see Figure 2-1 ). The ultimate goal is 
prediction of the response of the organism or population to exposure, and different tools can be used to 
probe or inform different places along that continuum. As noted in Chapter 2, although the continuum is 
depicted as a linear path, the committee recognizes that multiple interconnecting paths are typically in
volved in the continuum. 
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FIGURE 3-1 Computational models and biological assays are shown with the exposure-to-outcome continumn to 
illustrate where the models and assays might be used to provide information at various points in the pathway. The 
clear portion of the bar for read-across and SAR models reflects the fact that connections are typically made be
tween analogous chemicals for either the initial biological effect or the outcome. However, biological tools can also 
probe the response at the cell or tissue level and provide support for read-across and SAR analyses. If sufficient data 
are available, read-across and SAR analyses can be performed at various points along the exposure-to-outcome con
tinuum. 
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This chapter describes a variety of new assays and computational tools that are available for ad
dressing risk-based questions, but it is not meant to be comprehensive. The chapter organization follows 
the progression along the exposure-to-outcome continuum; the discussion begins with assays and compu
tational tools that are relevant for probing interactions of chemicals with cellular components and ends 
with ones that are relevant for predicting population-level responses. Understanding of pharmacokinetic 
relationships is critically important in toxicological evaluations for many reasons-for example, to evalu
ate whether exposures in in vitro cultures and in vivo assays are similar in magnitude and duration to ex
posures that result internally in exposed humans; to extrapolate from high to low dose, from one exposure 
route to another, and between species; and to characterize variability in internal human dose associated 
with a given exposure. Advances in pharmacokinetic analyses and models were discussed in Chapter 2 
and are not elaborated on further here. The chapter concludes with a discussion of challenges and offers 
recommendations that should help to address the challenges. 

The committee emphasizes that most Tox21 assays or systems were not developed with risk
assessment applications as an objective. Therefore, understanding on how best to apply them and interpret 
data in a toxicology context is evolving. For example, assay systems that were designed to detect agents 
that have high affinity for or potency against a particular biological target might not be optimized to de
tect agents that have moderate or low potency or that cause more than one effect. Some risk questions are 
being addressed as data from high-throughput systems become more available. However, the usefulness 
or applicability of various assays will need to be determined by continued data generation and critical 
analysis, and some assays that are highly effective for some purposes, such as pharmaceutical develop
ment, might not be as useful for risk assessment of commodity chemicals or environmental pollutants. 

PREDICTING AND PROBING INTERACTIONS OF 
CHEMICALS WITH CELLULAR COMPONENTS 

Chemical interactions with specific receptors, enzymes, or other discrete proteins and nucleic acids 
and promiscuous interactions, such as those between an electrophile and a protein or DNA, have long 
been known to have adverse effects on biological systems (NRC 2000, 2007; Bowes et al. 2012). Accord
ingly, the development of in vitro assays that probe molecular-level interactions of chemicals with cellu
lar components has been rapid, driven partly by the need to reduce high attrition rates in the drug
development process. Although various new assays have been developed, only a single assay-one that 
evaluates the human potassium channel (hERG channel)1-has been integrated into new drug applica
tions. Figure 3-2 illustrates some typical interactions with cellular components, and the following sections 
describe how the interactions are being investigated. 

Predicting Interaction by Using Chemical Structure 

In recent years, predicting chemical interactions with protein targets on the basis of chemical struc
ture has become much more feasible, particularly with the development and availability of open-access 
data sources (Bento et al. 2014; Papadatos et al. 2015). There are many published examples of computa
tional models that have been developed to predict the interaction of a molecule with a single protein, most 
notably models for predicting hERG activity (Braga et al. 2014) and interaction with the estrogen receptor 
(Ng et al. 2015), but prediction of multiple interactions in parallel is now possible given available compu
tational power. For example, Bender et al. (2007) used chemical similarity to predict the protein-chemical 
interactions associated with a novel chemical structure with a reported average accuracy of over 92% with 
some proteins and high selectivity; that is, only small numbers of active predictions were later shown to 
be negative in vitro. Although most of the activities were predicted correctly, it was at the expense of a 

1The blockade ofhERG channel has been directly implicated in prolongation of the QT interval, which is thought 
to play a role in the potentially fatal cardiac arrhythmia torsades de pointes. 
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FIGURE 3-2 Exposure-to-outcome continuum with examples of types of interactions between biological molecules 
and chemicals. 

high false-positive rate (that is, large numbers of inactive chemicals were predicted to be active). Most of 
the models have been built by using pharmaceutical candidates that have a high affinity for the particular 
protein, but there are examples in the literature in which the same approaches have been applied to identi
fy chemicals that bind a receptor with low affinity (see, for example, Hornung et al. 2014). 

Research to improve the prediction of protein-chemical interactions continues apace. Lounkine et 
al. (2012) used the similarity-ensemble approach-a method first published by Keiser et al. (2007)-and 
predicted the activity of 656 marketed drugs with 73 protein targets that were thought to be associated 
with clinical adverse events. The authors reported that about 50% of the predictions of activity were later 
confirmed experimentally with binding affinities for the protein targets of 1 nM to 30 11M. Cheng et al. 
(2012) evaluated chemical-protein interaction sets that were extracted from the ChEMBL database2 by 
using a computational method, multitarget quantitative structure-activity relationship (QSAR), that eval
uates G-protein coupled receptors (GPCRs) and kinase protein targets. Sensitivities were reported to 
range from 48% to 100% (average, 84.4%), and specificity for the GPCR models (about 99.9%) and the 
kinases was high. 

Assessing Interactions with Cell-Free Assays 

Cell-free or biochemical assays have long been used to probe the interactions of chemicals with bio
logical molecules, such as enzymes and hormone receptors, and their activity with these specific targets 
(Bhogal et al. 2005). The assays can provide reliable and valid results with high agreement between la
boratories and can be applied in low-, medium-, or high-throughput formats (Zhang et al. 2012a). 

The US Environmental Protection Agency (EPA) is exploring the use of the commercially available 
cell-free assays, run in high-throughput format, that were originally developed for preclinical drug evalua
tion to assess environmental chemicals (Sipes et al. 20 13). The panel selected by EPA measures various 
activities, including binding to GPCRs, steroid-hormone and other nuclear receptors, ion channels, and 
transporters. The panel also covers activation of kinases, phosphatases, proteases, cytochrome P450, and 
histone deacetylases (Sipes et al. 2013). Roughly 70% of the assays are derived from human cells, 20% 
from rat cells, and the remainder from other species. 

A wide variety of cell-free assays that evaluate other targets have been developed and are being used 
in pharmaceutical, biomedical, and academic laboratories (Xia et al. 2011; Mehta et al. 2012; Landry et 
al. 2015; McKinstry-Wu et al. 2015). They are being used to probe a wide array of protein types and func
tions, such as nod-like receptors, which are involved in immune and inflammatory responses (Harris et al. 
2015), methyltransferases (Dong et al. 2015), and various membrane proteins (Wilcox et al. 2015). 

2ChEMBL is a chemical database of biologically active molecules that is maintained by the European Bioinfor
matics Institute of the European Molecular Biology Laboratory. 
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The potency of the chemical's interaction in vitro-measured, for example, as an IC50 or Ke
provides information on the likelihood of an in vivo concentration high enough to permit observation of the 
phenotypic response. The degree of inhibition or activation of the protein function that is required for a phe
notypic response to be observed can vary widely and will depend partly on the nature and function of the 
protein or enzyme. For inhibitors ofGPCRs, the anticipated pharmacological response has been observed in 
vivo at plasma concentrations less than or equal to 3 times the measured IC50 of the chemical in question 
when corrected for plasma-protein binding (McGinnity et al. 2007). As a rule of thumb for pharmaceuticals, 
a 100-fold margin between the measured IC50 or KI in a cell-free assay and the circulating plasma unbound 
Cmax has been considered adequate to represent minimal risk of toxicity (N. Greene, AstraZeneca, personal 
commun., December 14, 2015). However, for environmental chemicals, which are not tested in clinical tri
als or followed up through medical surveillance, a different rule of thumb might be appropriate. And it is 
important to remember that toxicity is influenced by many factors, including the required degree of receptor 
occupancy, the ability of the chemical to reach the site of action (for example, to penetrate the blood-brain 
barrier), the nature of the modulatory effects (for example, inhibitor, agonist, or allosteric modulator), the 
kinetics of the binding of the interaction with the receptor, and exposure duration. 

CELL RESPONSE 

Cell-based in vitro assays have existed for nearly a century; the first publication of a dissociated cell 
culture was in 1916 (Rous and Jones 1916). Cell-culture technology has evolved to the point where many 
cell lines are available and more can be produced with current techniques. Cell cultures provide easy 
measurement of gene and protein expression and a variety of potentially adverse responses (see Figure 3-
3) and can be scaled to a high-throughput format (Astashkina et al. 2012). Additionally, cell-based assays 
derived from genetically different populations can allow rapid assessment of some aspects of variability 
in response to chemical exposures that depend on genetic differences (Abdo et al. 2015). 

Cell-based assays are being used to inform hazard identification and dose-response assessments, 
mostly as a complement to data from whole-animal or epidemiological studies to address questions of 
biological plausibility and mechanisms of toxicity. For example, in evaluations of chemical carcinogenici
ty, the International Agency for Research on Cancer (IARC) gives weight to functional changes at the 
cellular level (IARC 2006) and considers the relevance of the mechanistic evidence with regard to key 
characteristics of cancinogens (Smith et al. 20 16). Cell-based assays have been critical in the IARC as
sessments (IARC 2015a,b). Human-derived and animal-derived cell cultures have also been used to dis
cern dose-response relationships and toxicogenomic profiles, for example, for ethylene oxide responses 
(Godderis et al. 2012). The assays have potential use in addressing many of the risk-based questions 
raised at the beginning of this chapter and as illustrated in Chapter 5. 
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FIGURE 3-3 The exposure-to-outcome continuum with examples of cell responses. 

3IC50 is the concentration required to cause 50% of the maximal inhibitory effect in the assay, and KI is the inhi
bition constant for a chemical and represents the equilibrium constant of the dissociation of the inhibitor-bound en
zyme complex. 
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Cell cultures can be grown in a variety of architectures, including monolayer and 3-D cultures of 
cell lines, and can be used as indicators of possible tissue, organ, and sometimes organism-level signs of 
possible toxicity, particularly in integrated systems that consider effects and signaling among cell types 
(Zhang et al. 2012a). They can be used to evaluate a number of cellular processes and responses, includ
ing receptor binding, gene activation, cell proliferation, mitochondrial dysfunction, morphological or 
phenotypic changes, cellular stress, genotoxicity, and cytotoxicity. Various techniques and measure
ments-such as impedance, gene transcription, direct staining, reporter-gene output, and fluorescence or 
bioluminescence resonance energy transfer-can be used to measure cellular responses and processes (An 
and Tolliday. 2010; Song et al. 2011; Asphahani et al. 2012; Smith et al. 2012). Furthermore, simultane
ous measurements of multiple toxic phenotypes are possible with high-content imaging and other novel 
techniques. This section describes some of the recent developments in using cell-based assays to evaluate 
cellular response and emphasizes advances that can improve toxicology and risk assessment. 

The committee notes that cell-based assays have some limitations; one key concern involves meta
bolic capabilities. Specifically, do the assays capture how exogenous substances are metabolized in the 
body? That particular limitation might not be a concern for assays that are performed with low-throughput 
methods in which it might be possible to determine a priori whether metabolism is important for toxicity 
and, if so, to find ways to test the metabolites in addition to the parent chemicals. However, little or no 
metabolic capacity is a particular concern for high-throughput systems that are used for priority-setting. 
Parent chemicals and metabolites can differ substantially in toxicity and potency. If the in vitro assays do 
not sufficiently capture critical metabolites that form in humans, they might not give valid results for as
sessment because they are not testing the chemicals that potentially give rise to toxicity. Furthermore, 
although some assay systems might capture metabolism in the liver, extrahepatic metabolism might be the 
driver of some chemical toxicity, so the spectrum of relevant in vivo metabolic activation is an important 
consideration in understanding the validity of in vitro studies and interpreting the results from both in 
vitro and in vivo studies. EPA, the National Institute of Environmental Health Sciences, and the National 
Center for Advancing Translational Sciences are awarding research grants to make progress on the issue. 
For example, a multiagency collaborative announced in 2016 a $1 million competition in the Transform 
Tox Testing Challenge: Innovating for Metabolism; the challenge called on innovators to identify ways to 
incorporate metabolism into high-throughput screening assays (EPA/NIH/NCATS/NTP 20 16). EPA is 
also attempting to develop a system that encapsulates microsomal fractions of human liver homogenate in 
a matrix, such as an alginate, that will allow diffusion of low-molecular-weight chemicals but retain the 
toxic lipid peroxides. As an alternative approach, EPA is attempting a method that would transfect cells 
with mRNAs of enzyme-encoding genes to increase metabolic transformation intracellularly. The com
mittee views those initiatives as steps in the right direction and emphasizes the importance of addressing 
the issue of metabolic capacity. 

Primary Cells 

Primary cells are isolated directly from fresh animal or human tissue. They can be obtained from a 
wide variety of tissues, such as liver, brain, skin, and kidney; and they are amenable to high-content 
screening and analysis (Xu et al. 2008; Zhang et al. 2011; Thon et al. 2012; Raoux et al. 2013; Tse et al. 
2013; Valdivia et al. 2014; Feliu et al. 2015). Although primary cells are more reflective of in vivo cellu
lar and tissue-specific characteristics than are immortalized cells (Bhogal et al. 2005), they can be short
lived in culture and suffer from rapid dedifferentiation within hours to days. 

Several approaches to adapt primary cell culture to a high-throughput format for chemical-toxicity 
testing have been made (Sharma et al. 2012; Berg et al. 2015). For example, EPA profiled over 1,000 
chemicals (Houck et al. 2009; Kleinstreuer et al. 2014) to identify activity in eight primary cell systems, 
including ones that used fibroblasts, keratinocytes, and endothelial, peripheral blood mononuclear, bron
chial epithelial and coronary artery smooth muscle cells. With proprietary software, chemicals were clus
tered by bioactivity profiles, and some possible mechanisms of chemical toxicity were identified. The 
lack of publicly available datasets with which to compare the results and the complexity of the resulting 
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data precluded sensitivity and specificity calculations (Kleinstreuer et al. 2014). The standard by which to 
judge construct validity-that is, whether an assay system as a whole adequately represents the target bio
logical effect-still poses a challenge for these and other assays described in this chapter (see "Challenges 
and Recommendations for Advancing Toxicology" later in this chapter). 

A major advance in primary cell culture over the last decade is the development of 3-D cultures of 
cell lines.4 3-D cell cultures have better behavior and function than the monolayer cultures (van Vliet 
2011) and are of increasing interest in the development of cancer drugs because they recapitulate the tu
mor microenvironment to a much greater extent than do conventional monolayer assays that use a flat 
layer of cells (Edmondson et al. 2014; Lovitt et al. 2014). A number of assays that use 3-D cultures of 
primary cells from various tumors have been developed. Several studies (Arai et al. 2013; Chen et al. 
2014) have shown some degree of drug resistance to well-characterized cancer drugs, depending on assay 
type; 3-D assays show greater drug resistance. 

Similarly, primary isolated hepatocytes are the most widely used for in vitro testing, and 3-D culture 
systems with added cofactors are being developed to overcome limitations of conventional monolayer 
systems (Soldatow et al. 2013), which notably include lack of sensitivity for detection of hepatotoxic 
drugs. The 3-D cultures that are used, for example, for enzyme induction or inhibition studies, maintain 
function for a relatively long period (1-3 days) and can be used to re-establish cellular polarity that is lost 
in monolayer cultures. Advances in liver-culture techniques and technology have led to improvements 
and greater complexity in 3-D liver-cell culture for use in toxicological evaluations, and the next step is 
development of a bioartificialliver, commonly referred to as an organ-on-a-chip, discussed in greater de
tail below in "Tissue and Organ-Level Response". 

The examples of tumor-cell and liver-cell cultures discussed in this section highlight the movement 
from monolayer cultures to improved 3-D cultures of greater complexity and ultimately toward organo
typic models for various tissues and organs (Huh et al. 2011; Bulysheva et al. 2013; Guiro et al. 2015). 

Immortalized Cell Lines 

Immortalized cell lines can be derived from isolated human cancer cells or from primary cells that 
have been genetically altered for enhanced longevity and resilience in tissue culture. Immortalized cell 
lines do not need to be isolated and harvested for each use, are relatively easy to maintain and propagate, 
are stable when replated multiple times, and can be easily frozen and shared between laboratories and 
grown in large quantities. Cloning immortalized cells enables testing in genetically identical cells, and 
immortalized cell lines that are derived from diverse populations allow inquiry into the variability of 
chemical toxicity among populations (Abdo et al. 2015). However, more than the conventional monolayer 
cultures of primary cells, immortalized cell lines can lose native in vivo properties and functionality. They 
can have altered cellular polarity (Prozialeck et al. 2003; Soldatow et al. 2013), non-native genetic content 
(Yamasaki et al. 2007), and decreased amounts of key cellular features (such as ligands, transporters, and 
mucin production); and they can be contaminated with other cell lines, such as HeLa and HepG2. Altera
tions in cellular phenotype can result in insensitivity to and mischaracterization of test chemicals. For ex
ample, when testing the difference between mitochondrial toxicity observed in renal proximal tubule cells 
(primary cells) and that observed in immortalized human renal cells, researchers found that primary cells 
were capable of identifying more possible toxicants than were immortalized cell lines (Wills et al. 20 15). 

Many of the assays in the federal government's ToxCast and Tox21 programs use immortalized car
cinoma-derived cell lines (T47D breast, HepG2 liver, and HEK293T kidney). The assays have shown po
tential for identifying chemical carcinogens found in rodents (Kleinstreuer et al. 2014) and for exhibiting 
some predictive ability in the preliminary classification of hepatotoxic chemicals in guideline and guide
line-like animal studies (Liu et al. 2015). However, the assays have also been shown to be unable to pre
dict some well-recognized hazards observed in humans or animals (Pham et al. 2016; Silva et al. 2015). 

43-D culture is a generic term that is used to describe culture systems that are grown on some sort of support or 
scaffold, such as a hydrogel matrix. 3-D cultures often have two or more cell types. 
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ToxCast data have been proposed for use in predicting in vivo outcomes of regulatory importance 
(see Rotroff et al. 2013; Sipes et al. 2013; Browne et al. 2015), such as estrogenic properties of chemicals 
predicted by the utero trophic assay, but their use as replacement assays has been the subject of research 
and discussion. For example, EPA's Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Sci
ence Advisory Panel recommended that the agency not replace the uterotrophic assay with a computa
tional model of estrogen receptor agonist and antagonist activity derived from ToxCast data (EPA 20 14a). 
Although the panel noted a number of strengths of the model, it had concerns about diminished perfor
mance of the model for nonreference chemicals and the inability of the model to assess chemicals that had 
modified toxicity because of pharmacokinetic factors or that had toxicity pathways different from those 
evaluated in the assays. Thus, the panel found that further research was needed. More recently, EPA re
considered the results of a high-throughput battery of estrogenicity assays, concluded that the test battery 
is a satisfactory replacement of the uterotrophic assay for tier 1 endocrine-disrupter screening, and intends 
to use the results of the test battery to evaluate and screen chemicals in the future (Browne et al. 2015; 
EPA 2015). 

Because immortalized cell lines are limited in the degree to which they can represent cells in intact 
tissues, alternative approaches of cell immortalization have been developed and are now being made 
commercially available. "Conditionally immortalized" cell lines that can undergo differentiation are in
creasingly available for use in biomedical research with potential applications in toxicology (Liu et al. 
2015). 

Stem Cells 

Advances in stem-cell research have allowed the generation of a wide array of cell types, some of 
which have metabolic competence, which makes them useful for studying the effects of chemicals on var
ious tissues (Scott et al. 2013; Gieseck et al. 2015). Fit-for-purpose stem-cell-based tests are becoming 
commercially available (Anson et al. 2011; Kolaja 2014), and research is under way to develop stem cells 
for application in toxicology (Sjogren et al. 2014; Romero et al. 2015). For example, an in vitro murine 
neural embryonic stem-cell test has been advanced as an alternative for a neurodevelopmental toxicity test 
(Theunissen et al. 2012; Tonk et al. 2013). The ability to grow rapidly, manipulate, and characterize an 
array of cell types makes stem cells potentially useful for chemical-toxicity evaluations. Furthermore, as
says that use stem cells harvested from genetically diverse populations show considerable promise for 
providing information that can help in addressing hazard and risk-assessment questions. 

Stem cells of potential use in toxicology research are of three primary types: embryonic, adult, and 
induced pluripotent stem cells. Embryonic stem cells are harvested from embryos that are less than 5 days 
old and have unlimited differentiation ability. Adult stem cells are isolated from adult bone marrow, skin, 
cord blood, heart tissue, and brain tissue. Induced pluripotent stem cells (iPSCs) are produced from adult 
somatic cells that are genetically transformed into a pluripotent state (Takahashi et al. 2007). iPSCs are 
similar to embryonic stem cells (pseudoembryonic) and can be grown in monolayer and 3-D structures for 
multiple generations. They can take on a variety of cell types, including neuronal cells (Malik et al. 2014; 
Sirenko et al. 2014a; Efthymiou et al. 2015; Wheeler et al. 2015), hepatocytes (Gieseck et al. 2014; Si
renko et al. 2014b; Mann 2015), and cardiomyocytes (Sinnecker et al. 2014; Karakikes et al. 2015). The 
ability to be derived from adult cells and the capacity to differentiate into multiple cell types also make 
iPSCs particularly promising for exploring human diversity. Cells can be created from specific individu
als to produce personalized biomarkers, and iPSCs derived from large patient populations (Rossini et al. 
2015; Mattis et al. 2015) could help to identify pathways involved in disease and susceptibility (Astash
kina et al. 2012). Because iPSCs are relatively cost-effective to produce on a large scale (Beers et al. 
2015), they have the potential to improve cell-based toxicity testing substantially. 

There are some challenges to overcome in using stem cells. They can have different expression pro
files, which indicate that they might have altered cellular processes, pathways, and functions. Stem cells 
generally can be difficult to culture and transfect, and the difficulties could limit their application in high
throughput formats. The lack of systematic approaches for characterizing and standardizing culture prac-
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tices (such as characterizing cell types, sex origin, and cell function) also presents an obstacle for using 
stem cells in toxicology applications. Although stem cells (and other cells) have inherent limitations, they 
are still useful windows into biological processes at the cellular and molecular levels and remain useful 
for assessing chemical toxicity. A careful evaluation of cell phenotype and properties would help to de
termine the extent to which human biology is recapitulated in the cellular model. 

Modeling Cellular Response 

Over the last decade, numerous mathematical models and systems-biology tools have been advanced 
to describe various aspects of cell function and response. Considerable progress has been made in describ
ing feedback processes that control cell function. The development of cell-based modeling has benefited 
greatly from coordinated contributions from the fields of cell biology, molecular biology, biomedical en
gineering, and synthetic biology. 

A few simple structural units that have specific functions and appear repeatedly in different species 
are referred to as network motifs (Milo et al. 2002; Alon 2007). Molecular circuits are built up from net
work motifs and carry out specific cellular functions, such as controlling cell-cycle progression, xenobi
otic metabolism, hormone function, and the activation of stress pathways-the major pathways by which 
cells attempt to maintain homeostasis in response to chemical and other stressors, such as oxidative stress, 
DNA damage, hypoxia, and inflammation. Computational models are used to examine those circuits, the 
consequences of their activation, and their dose-response characteristics. 

Toxicity pathways defined in NRC (2007) as cellular-response pathways can be thought of as mo
lecular circuits that, when sufficiently perturbed, lead to adverse effects or toxicity. The circuits can be 
modeled with computational systems-biology approaches. The tools for describing the circuits and func
tion are developing rapidly (Tyson and Novak 2010; Zhang et al. 2010) and should enable study of the 
dose-response characteristics of the perturbation of toxicity pathways (Simmons et al. 2009; Zhang et al. 
2014, 2015). Quantitative descriptions of the pathways hold the promise of characterizing differences in 
individual susceptibility to chemicals at the cellular level but will require identification of components of 
signaling pathways that differ among individuals; sensitivity and other analyses can be applied to deter
mine components that most affect human variability in adverse response. Confidence in the models will 
increase as they are applied to a more diverse suite of signaling pathways. Model refinement coupled with 
careful collection of data on detailed biological responses to chemical exposure will test model structures, 
refine experimental strategies, and help to chart new approaches to understanding of the biological basis 
of cellular dose-response behaviors at low doses. 

TISSUE-LEVEL AND ORGAN-LEVEL RESPONSE 

The last decade has seen advances in engineered 3-D models of tissue and computational models for 
simulating response at the tissue level (see Figure 3-4). This section describes organotypic models, organ
on-a-chip models, and virtual-tissue models that might be particularly applicable for toxicology research. 
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FIGURE 3-4 Exposure-to-outcome continuum with example of tissue and organ effects. 
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Organotypic Models 

An organotypic model is a specific type of 3-D culture in which two or more cell types are put to
gether in an arrangement intended to mimic, at least in part, an in vivo tissue and that therefore recapitu
lates at least some of the physiological responses that the tissue or organ exhibits in vivo. Organotypic 
models of skin, which contain keratinocytes and fibroblasts, have been developed and validated for use as 
alternative models for testing skin irritation (Varani et al. 2007), and data from these models are now ac
cepted in Europe for classification and labeling of topically applied products (Zuang et al. 201 0). The skin 
model is being evaluated to improve the specificity of in vitro genotoxicity testing. Organotypic skin cul
tures appear to have reasonably good concordance with in vivo genotoxicity results (Pfuhler et al. 2014) 
probably because they retain the ability to metabolize and detoxify chemicals and because the rate of de
livery of chemicals to the basal layer is more comparable with the kinetics of dermal absorption in vivo. 
Other organotypic models include eye, lung epithelium, liver and nervous system tissue (see NASEM 
2015). The effects of environmental chemicals have been explored in mouse organoids by using proteo
mic tools (Williams et al. 2016). 

Organ-on-a-Chip Models 

An emerging scientific development is the organ-on-a-chip model (see Figure 3-5), which is a 3-D 
culture grown in a multichannel microfluidic device (Esch et al. 2015). The models are meant to have the 
same functionality as organotypic cultures but with the ability to manipulate physiological and pharmaco
kinetic processes (that is, the rate at which a chemical is introduced via the flow-through channels). Sev
eral organ-on-a-chip models have been engineered, including ones for liver, heart, lung, intestine, and 
kidney. The models allow the study of how chemicals can disrupt an integrated biological system and 
how the disruption might be influenced by the mechanical forces at play in the intact organ, such as the 
stretching of the alveolar-capillary barrier in lungs due to the act of breathing. 

FIGURE 3-5 Generalized components of an organ-on-a-chip model. Source: Birnbaum 2011. 
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Attempts have been made to design platforms that have different organ mimics arranged in series or 
parallel that as a system can recapitulate aspects of tissue interactions and in vivo pharmacokinetics (Sung 
and Shuler 2010). A long-term goal is to introduce a parent chemical into the system and have it move 
through a liver compartment where it would be metabolized, flow to compartments that contain respon
sive cell types or to other compartments that contain hydrophobic materials that represent fat, and finally 
flow through a kidney compartment where it could be eliminated. To date, microfluidic platforms that 
have that much complexity have not yet been introduced in practice and have not achieved a realistic me
tabolite distribution through the various tissues in the system (Andersen et al. 2014). 

Researchers face challenges in developing such experimental platforms, for example, with the syn
thetic materials used in the manufacture of the cell-culture substrates. They often are not good mimics of 
the extracellular matrix and can even absorb small hydrophobic molecules (Wang et al. 2012); that ab
sorption might exert an undue influence on the physiological system or alter chemical concentrations. 
Large-scale manufacture and high-throughput operation of organ chips also present challenges to the 
adoption of the technology. Similarly, access to sustainable sources of human cells presents a substantial 
hurdle for reproducibility and interpretation of the data produced. 

Microsystems that are composed of multiple synthetic organ compartments are in the early stages of 
development, and a number of initiatives are going on to validate model correlations with in vivo obser
vations. For example, the National Center for Advancing Translational Sciences has a number of efforts 
in this field (NCATS 2016), and the European Union-funded initiative Mechanism Based Integrated Sys
tems for the Prediction of Drug Induced Liver Injury (EU 20 15) has also been exploring the use of liver
chip models to predict adverse effects of drugs. Organ-on-a-chip models are promising, but they are not 
yet ready for inclusion in risk assessments. 

Virtual Tissues 

As discussed earlier, computational systems biology might be used to describe pathway perturba
tions that are caused by chemical exposures and the resulting cell responses. Such modeling can be ap
plied to multiple processes that operate in sequence or parallel and used to link cellular responses to tis
sue-level responses. Modeling feedforward and feedback controls through sequential dose-dependent 
steps also enable the examination of responses to toxicant exposure that require multiple cell types, such 
as Kupffer cell-hepatocyte interactions involved in hepatocyte proliferation. Feedback and feedforward 
control might also contribute to intercellular patterns of response that require input from earlier pathway 
or cellular functions to activate or inhibit integrated multicellular responses. The cellular responses alter 
tissue function; the quantitative modeling then focuses on the interface between the cellular-level compu
tation models and virtual-tissue models. 

EPA's Computational Toxicology Program has developed mathematical models called virtual tis
sues for the embryo and the liver (Shah and Wambaugh 2010; Wambaugh and Shah 2010). EPA also has 
developed a model of blood-vessel development. Virtual-tissue models can use "agent-based" modeling 
of different cells in the tissue, which relies on and mathematically describes key aspects of cellular behav
ior or other tissue components to derive the properties of the tissue or organ of interest (Swat and Glazier 
2013). The EPA models evaluate chemical exposures that alter growth and phenotypic characteristics of 
the agents in the models, which in this case are the cells. The models can describe cell growth or pattern 
formation of different structures in the virtual embryo or regional distribution of cell response in the vir
tual liver. 

As with any model, a critical consideration in developing response models is fidelity of biology be
tween the modeled outcome (virtual-tissue responses) and the apical and other responses observed experi
mentally. Assumptions and predictions of the models can be tested by using information from human cells 
and co-cultures with different human cell types. Short-term targeted animal studies that use toxicogenomic 
tools and other approaches can be used to evaluate the model more broadly. Virtual-tissue models have the 
potential to help in conceptualizing and integrating current knowledge about the factors that affect key 
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pathways and the degree to which pathways must be perturbed to activate early and intermediates responses 
in human tissues and, when more fully developed, to support risk assessments based on studies of key 
events and how the key events combine to cause adverse responses at the organism level. 

ORGANISM-LEVEL AND POPULATION-LEVEL RESPONSE 

The Tox21 report (NRC 2007) emphasized a future in which routine toxicity testing would rely on 
in vitro assays with human cells or assays that probe molecular responses of human toxicity pathways and 
pathway components. But, the report also noted that in some cases testing in whole animals might be nec
essary, depending on the nature of the risk-assessment questions, although whole-animal studies were not 
intended to provide routine information for assessing risks. The need for different types of information 
related to the nature of the question posed was also emphasized in EPA's report on next-generation risk 
assessment (EPA 2014b; Krewski et al. 2014; Cote et al. 2016). That report considered three types of as
sessments: screening and priority-setting assessments, limited-scope assessments, and in-depth assess
ments. The last one would likely involve a wide array of toxicity-testing approaches, including whole
animal studies. Approaches for assessing variability could also benefit from rodent panels that capture 
population variability and panels of human cells derived from a group of diverse people. As is true of tox
icity-testing tools at the molecular and cellular levels, there has been continuing development of new 
methods for examining responses in whole animals that are likely to provide important information for 
the limited-scope and especially for the in-depth assessments. The approaches for assessments on differ
ent levels emphasize a fit-for-purpose orientation of designing the testing assays or batteries that depend 
on the risk-assessment question. This section discusses novel animal models that provide opportunities 
for enhancing the utility and power of whole-animal testing. It also describes recent advances in structure
based computational models and read-across approaches that provide opportunities for predicting re
sponse of data-poor chemicals at the organism level. Figure 3-6 highlights some organism-level and 
population-level responses. 

Novel Whole-Animal Models 

Advances in genetics, genomics, and model-organism development have led to genetically well
characterized whole-animal models, including transgenic rodent lines, isogenic mouse strains, and alter
native species, such as zebrafish and Caenorhabditis elegans, which can be studied in a high-throughput 
format. Those models coupled with toxicogenomics and novel imaging offer improvements over the tradi
tional in-life rodent studies in that they offer new ways to explore chemical interactions at tissue and cel
lular levels. Isogenic strains also offer new opportunities to identify determinants of human susceptibility, 
especially when coupled with new interrogation tools, and to define new mechanisms of toxicity. Target
ed testing, which is typically hypothesis-driven and more focused than historical testing strategies, can 
help to develop and enhance the value of the new animal models, as well as traditional ones. It can be 
used to explore the mechanisms by which a chemical causes toxicity, how outcomes might differ by age 
and sex, and how susceptibility might vary in the population. It can help to address specific knowledge 
gaps in risk assessment and can link in vitro observations to molecular, cellular, or physiological effects 
in the whole animal. Targeted testing will be critically important in evaluating and validating the robust
ness and reliability of new computational models, in vitro assays, and testing batteries (Andersen and 
Krewski 2009; Krewski et al. 2009). As this section shows, the new animal models and outcome
interrogation tools might provide broader assessment of hazards in whole organisms. 

Transgenic Rodents 

The development of transgenic mouse lines (such as knockin, knockout, conditional knockout, re
porter, and humanized lines) advanced biomedical research; a few transgenic rat lines are also available 
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FIGURE 3-6 Exposure-to-outcome continuum with examples of organism and population-level responses. 

now. Novel gene-editing technologies, such as CRISPR/Cas9, have the potential to generate inducible 
gene editing in adult animals and the creation of transgenic lines in nontraditional mammalian models 
(Dow et al. 2015). Gene editing permits the creation of experimental approaches that are more specifical
ly suited for various tasks, including targeted testing of susceptible strains and exploration of gene
environment interactions. 

Although transgenic animals have been available for decades (Lovik 1997; Boverhof et al. 2011), 
testing in transgenic animals and incorporation of data from transgenic models into risk assessment has 
been limited, partly because of questions about applicability for risk assessment and concerns about the 
cost to develop the models and evaluate a chemical in multiple strains. The National Toxicology Program 
(NTP) continues to evaluate and develop such models. For example, NTP is using transgenic mice in the 
testing of the artificial sweetener aspartame, which generally tested negative in standard assays but 
showed a slight increase in brain tumors in a more sensitive transgenic-mouse strain. The transgenic p 16 
model was used because it was thought to be susceptible to brain glial-cell tumors. NTP is also testing 
aspartame in transgenic strains with knocked-out tumor-suppressor genes and activated oncogenes to im
prove characterization of susceptibility and risk related to gene-environment interactions. Transgenic
rodent mutation data have been used by EPA to understand carcinogenic mechanisms of several agents, 
such as acrylamide (EPA 20 10), but beyond those applications their incorporation into risk assessment 
has been limited. They have been somewhat more widely used to test specific hypotheses about mecha
nism, such as the mechanism of liver-cancer induction by phthalates (Guyton et al. 2009), and to evaluate 
the depth of biological understanding to apply fully organotypic, computational systems-biology, physio
logically based pharmacokinetic (PBPK), or other tools. 

Genetically Diverse Rodents 

Historically, toxicity testing has used only a few rodent species and strains. Although there are ad
vantages in using a well-characterized strain of mice or rats to test chemical toxicity, there are many 
shortcomings, including concerns about inadequately accounting for profound strain differences in chem
ical sensitivity and metabolism (Kacew and Fe sting 1996; Pohjanvirta et al. 1999; De Vooght et al. 201 0) 
and inadequate genetic and phenotypic diversity. High rates of spontaneous disease in some strains (out
bred and inbred) can sometimes complicate the interpretation of results. For example, the incidence of 
background cardiomyopathy in the Sprague Dawley rat can be as high as 100% (Chanut et al. 2013), 
some strains are completely resistant to some toxicants (Shirai et al. 1990; Pohjanvirta et al. 1999), and it 
is unclear a priori whether the standard strain has sensitivity that is adequate or too high for identifying a 
potential human hazard. 

Assessment in multiple strains that have known genetic backgrounds is one approach to address var
iable sensitivity among relatively homogeneous test strains and to address questions related to interindi
vidual sensitivity to toxicants. Initiated in 2005, the Collaborative Cross (CC) is a large panel of novel 
recombinant mouse strains created from an eight-way cross of founder strains that include three wild
derived strains. The CC has a level of genetic variation akin to that of humans and captures nearly 90% of 
the known variation in laboratory mice (Churchill et al. 2004). Outbred progeny that have completely re
producible genomes can be produced through the generation of recombinant inbred intercrosses (RIX) 
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(Zou et al. 2005). Because the CC strains and, by extension, the RIX lines have a population structure that 
randomizes existing genetic variation, these models provide the increased power that is required to ex
plore the genetic underpinnings of interindividual susceptibility. For example, the CC mouse replicated 
human susceptibility, immunity, and outcome of West Nile virus infection more comprehensively than 
the standard inbred model (C57BL/6J) (Graham et al. 2015). 

There are several examples of the value of the CC in toxicological evaluation. Trichloroethylene 
(TCE) metabolism, for example, varies considerably among people and among mouse strains, and the 
metabolites differ in their mechanisms, toxicity, and organ-specific effects (NRC 2006). That variability 
has been a critical barrier to understanding of the risk that TCE poses to humans. To address the challenge 
in TCE-toxicity testing, a battery of mouse lines was used to assess interindividual variability in TCE me
tabolism and toxicity in the liver and kidney (Bradford et al. 2011; Y oo et al. 20 15a,b ). Significant differ
ences in toxicity and metabolism were observed in the different strains. Population PBPK modeling was 
applied to the study results to illustrate how data on diverse mouse strains can provide insight into phar
macokinetic variability in the human population (Chiu et al. 2013). 

Multi strain approaches have also revealed fundamental mechanisms of hepatotoxicity of acetamino
phen and biomarkers of this potentially fatal effect. Harrill et al. (2009) used a panel of 36 inbred mouse 
strains and found that liver injury induced by acetaminophen was associated with polymorphisms in four 
genes, but susceptibility to hepatotoxicity was associated with yet another, CD44. Follow-up study of two 
healthy human cohorts showed that variation in the human CD44 gene conferred susceptibility to aceta
minophen liver toxicity. This powerful example shows how a diverse animal population (in this case, 
mice) can be used to characterize and identify potential susceptibility in humans. 

The Diversity Outbred (DO) population is a heterogeneous stock seeded in 2009 from 144 inde
pendent lineages from the CC breeding colony. Each DO mouse is unique and has a high level of allelic 
heterozygosity (Churchill et al. 2012). Because they were derived from the same eight strains as the CC 
mice, their genome can be reconstructed with a high degree of precision-a feature that facilitates ge
nome-wide association studies and other similar approaches. A 2015 NTP proof-of-concept study that 
used DO mice to capture variation in benzene susceptibility successfully identified two sulfotransferases 
that modify and eliminate benzene metabolites that confer resistance to benzene toxicity (French et al. 
2015). 

One caveat in using genetically diverse rodent models is that their use potentially can increase ani
mal use. The most effective use of such models in toxicology requires acceptance of novel computational 
approaches, experimental designs, and statistical approaches that are specifically suited for the models 
and capable of handling the unprecedented amount of data that these studies generate (Festing 2010). For 
example, factorial designs can maximize genetic diversity and reduce the risk of false negatives without 
necessarily requiring more animals than traditional rodent studies to address the central question. Addi
tionally, using DO mice requires accepting that each individual is unique and that there is no way to in
corporate "biological replicates" in the traditional sense. Researchers and risk assessors need to be aware 
of and comfortable with the suite of data that results from these studies and to understand how to integrate 
the data with information from other sources, including more traditional animal models (see Chapter 7). 
Computational tools uniquely suited for these emerging animal models are available and readily adaptable 
to toxicological testing (Zhang et al. 2012b; Morgan and Welsh 2015). Tools for data analysis, visualiza
tion, and dissemination are also available (Morgan and Welsh 2015). As with any model system, these 
rodent models should be used only for questions that they are best suited to address. NTP and other 
groups are developing frameworks and use cases to highlight when it is advantageous to use such models, 
and the committee supports further discussion on this issue. 

Other Whole-Animal Systems 

Advances in genomics, imaging, and instrumentation have made some alternative species-such as 
Caenorhabditis elegans (a nematode), Drosophila melanogaster (a fruit fly), and Dania rerio (the 
zebrafish)-useful animal models for hazard identification and pathway discovery. Many technical ad-
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vantages are shared among the three dominant nonmammalian species, but zebrafish have several useful 
characteristics not shared by the others. The genomes of zebrafish and humans display remarkable ho
mology with an overall conservation of over 70%. Furthermore, 80% of the genes known to be involved 
in human disease are expressed in zebrafish (Howe et al. 2013b). The signal-transduction mechanisms, 
anatomy, and physiology of zebrafish are homologous to those of humans (Dooley and Zon 2000), and 
zebrafish have all the classical sensory pathways, which are generally homologous to those of humans 
(Moorman 2001; Colley et al. 2007). 

Another important attribute that might make zebrafish particularly well suited for translational re
search is the capacity to generate transgenic reporter lines that express fluorescent genes in specific cells, 
tissues and organs. The large collection of transgenic fish lines are curated by the Zebrafish Model Organ
ism Database and maintained by the Zebrafish International Information Network (Howe et al. 2013a). 
There is also a rich diversity of zebrafish-disease models and drug screens to help to understand, prevent, 
and develop therapies for human diseases, including various cancers (Feitsma and Cuppen 2008; Nguyen 
et al. 2012; Gallardo et al. 2015; Gordon et al. 2015), diabetes and obesity (Gut et al. 2013; Dalgin and 
Prince 2015; Schlegel and Gut 2015), psychiatric conditions (Panula et al. 2010; Norton 2013; Jones and 
Norton 2015), heart disease (Arnaout et al. 2007; Chico et al. 2008; Arnaout et al. 2014; Asnani and Pe
terson 2014; Walcott and Peterson 2014), neurodegenerative syndromes (Bretaud et al. 2004; Chapman et 
al. 2013; Mahmood et al. 2013; DaCosta et al. 2014; Martin-Jimenez et al. 2015; Preston and Macklin 
2015), autism (Tropepe and Sive 2003), immunodeficiencies (Meeker and Trede 2008; Cui et al. 2011), 
and blood disorders (Ablain and Zon 2013). Zebrafish have been used to investigate neurotoxicants (Lev
in et al. 2007; Egan et al. 2009; Irons et al. 201 0), and Box 3-1 provides an example of using zebrafish for 
behavioral assessments. 

BOX 3-1 Using Zebrafish to Assess Behavior 

A limitation of current in vitro screening is the general paucity of assay coverage to identify neurotox
ic chemicals reliably. Observations of zebrafish embryonic and larval photomotor responses provide 
robust measures of nervous-system deficits based on well-established methods. For example, 18-24 
hours after fertilization (embryo stage), the photomotor response is measured as tail flexions before 
and after a bright-light impulse. That assay has proved to be a highly sensitive chemical-toxicity screen
ing tool (Kokel et al. 201 0; Reif et al.2016). At 5 days after fertilization (larval stage), the photo motor 
response can be assessed as a change in swimming activity in response to a sudden light-dark transi
tion. Both tasks can be digitally measured in individual wells, so these complex behavioral assays are 
highly amenable to high-throughput analysis (Padilla et al. 2012; Truong et al. 2014). The adult 
zebrafish is increasingly used to measure neurobiological end points affected by chemical exposures. 
An array of behavioral tests have been designed to probe different domains involved in sensorimotor 
systems, cognition, and responses related to learning, memory, and anxiety. Indeed, zebrafish adults 
and juveniles display a variety of complex behaviors, such as kin recognition (Mann et al. 2003; Ger
lach et al. 2008), shoaling and schooling (Engeszer et al. 2007; Miller and Gerlai 2012), territoriality 
(Spence and Smith 2005), associative learning (AI-Imari and Gerlai 2008; Fernandes et al. 2014), and 
nonassociative responses, such as habituation (Best et al. 2008). A number of neurobehavioral tests of 
anxiety and exploration have been modeled, and there is some evidence of conserved responses that 
resemble those of rodent models (Panula et al. 2006; Egan et al. 2009; Champagne et al. 2010; Steen
bergen et al. 2011 ). Startle tests have been developed to understand sensorimotor responses in 
zebrafish exposed to environmental chemicals. Those assays have been used to test chemical effects 
on zebrafish motor responses, including responses related to fluorinated organics (Chen et al. 2013), 
vitamin E deficiencies (Lebold et al. 2013), nanoparticles (Truong et al. 2012), and pesticides (Sledge 
et al. 2011; Crosby et al. 2015). Collectively, the sophisticated assays could be scaled to increase the 
throughput with which chemicals are assessed for their effects on the nervous system. 
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The Zebrafish Mutation Project hosted by the Sanger Institute is yet another major effort that will 
facilitate cross-species studies. The project aims to develop a knockout allele in every protein-coding 
gene in the zebrafish genome and characterize its morphological phenotype (Kettleborough et al. 2013). 
Mining of zebrafish gene or phenotype databases should provide powerful opportunities to identify genes 
involved in chemical-induced phenotypes. 

An additional advantage of zebrafish is that the zebrafish genome is fully annotated, so tran
scriptomic and all other -omics approaches are possible. Repression of gene expression by antisense mor
pholinos, siRNA, and such gene-editing techniques as CR1SPR/Cas9 is routinely used to assess gene 
functions in the intact fish, and zebrafish embryos and larvae are nearly transparent, so noninvasive ob
servation is possible. Because larvae measure less than a few millimeters, they can be accommodated in 
multiwell plates, such as 384-well formats (Rennekamp and Peterson 2015). Only small quantities of test 
chemicals are needed, so exposure-response relationships can be evaluated over a broad concentration 
range and testing can be replicated to increase data confidence. 

Although substantial research is going on with adult zebrafish for translational research (Phillips and 
Westerfield 20 14; Pickart and Klee 20 14), early zebrafish life stages are particularly well suited for rapid 
screening. During the first 5 days of life, nearly all gene products and signal-transduction pathways are 
expressed (Pauli et al. 2012); thus, as in other vertebrates, development is a period of heightened sensi
tivity to chemical exposure. Early-life-stage zebrafish also express a full battery of phase I and phase II 
metabolism systems, whose activities are highly similar to those of humans (Goldstone et al. 2010). 

Despite the advantages of incorporating the use of early-life-stage zebrafish as part of a strategy for 
making risk-based decisions, there are some noteworthy limitations. First, test chemicals typically are 
added directly to the aqueous media, not unlike cells in culture. However, the routes of exposure over the 
course of development, which can affect chemical uptake and metabolism, can be quite different. During 
the first 2 days of embryonic development, the primary route of exposure is passive dermal adsorption. 
Later in development, the gills and oral routes become available, and circulation plays a major role in 
chemical distribution. For the varied routes of exposure, there is little understanding of tissue concentra
tions, and this contributes to the challenges in comparing concentration-response results in zebrafish with 
dose-response studies in other systems directly. 

A related potential limitation is that despite metabolic similarities to other vertebrates, subtle differ
ences in metabolic activity could lead to inaccurate toxicity predictions, particularly if metabolic activa
tion or inactivation is mechanistically important for specific test chemicals. Because the developing em
bryo constitutes a comprehensive integrated system, all potential molecular initiating events are 
operational during testing. Thus, zebrafish are uniquely sensitive to chemical contaminants present in test 
solutions in that a contaminant could act on biological targets and disrupt critical molecular events. Final
ly, as with any animal model, the primary sequences of individual pathway components are not necessari
ly highly conserved. For example, the zebrafish cyclin-dependent kinase 20 (cdc20) protein is 75% iden
tical with the human protein at the amino acid level, and the zebrafish and human aryl hydrocarbon 
receptors are only 40% identical. In both cases, the homologous proteins are functionally conserved. 
Although variable conservation of the genomes is a source for potential discordance between zebrafish 
and humans, the challenge is not unique to zebrafish inasmuch as individual allelic variations between 
humans can also result in marked differences in chemical susceptibility. 

Computational Structure-Based Models for Predicting Organism-Level Response 

It has long been recognized that chemicals that have similar chemical structures can elicit the same 
or similar toxicological effects and that, paradoxically, almost identical chemicals can cause dissimilar 
biological responses. The extent to which similar chemicals or their metabolites interact with critical bio
logical molecules, such as target proteins, and operate by similar mechanisms is a critical element in de
termining structure-activity relationships. The last decade has seen advances in the development of struc
ture-based computational methods to predict human health effects. Some are computational expert 
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systems that consider structural alerts and underlying mechanisms, others are QSAR models that rely on 
statistical correlations with molecular fragments, and still others are hybrids of these. Many advances 
have been supported by large curated databases and increased computational power. Health effects ad
dressed include carcinogenicity (Contrera et aL 2005; Valerio et aL 2007), hepatotoxicity (Greene et aL 
2010; Hewitt et aL 2013), reproductive and developmental effects (Matthews et al. 2007; Wu et al. 2013), 
and skin sensitization (Roberts et al. 2007a,b; Alves et al2015). 

The structure-based computational models that are probably the most advanced in model perfor
mance and regulatory acceptance are QSAR models for genotoxicity or more specifically for mutagenici
ty as measured in the Ames assay, a reverse-mutation bacterial assay that is commonly used to evaluate 
the potential of chemicals to induce point mutations. The development of those models has benefited from 
the quantity and structural diversity of data available in the public domain on chemicals that have been 
tested in the Ames assay. As a result of performance, computational models are being accepted as surro
gates for actual testing and have recently been incorporated into international guidelines for assessing mu
tagenic impurities in pharmaceuticals to limit potential carcinogenic risk (ICH 2014). Computational ap
proaches for other human health effects are being considered for use in a regulatory setting (Kruhlak et aL 
2012), and the Organisation for Economic Co-operation and Development has published guidance that 
outlines the needed components of a QSAR model in regulatory settings (OECD 2004). They include "a 
defined end point; an unambiguous algorithm; a defined domain of applicability; appropriate measures of 
goodness of fit, robustness, and predictivity; and, if possible, a mechanistic interpretation" (Gavaghan 
2007). 

The lack of wide use of QSAR models for end points other than mutagenicity might reflect predic
tive performance that falls short of that required for practical applications. Most approaches predict only 
whether a chemical will cause the adverse effect. The inability to predict a plasma concentration that 
would be expected to elicit toxicity ultimately limits utility for differentiating between closely related 
structures on which little or no safety information is available for comparison. 

Read-Across Predictions 

Read-across is a process that uses two-dimensional chemical-structure information to identify chem
icals (analogues) that have been well studied toxicologically that are then used to predict the toxicity of a 
similar chemical that has inadequate toxicological data or to group chemicals for the purpose of evaluat
ing their toxicity collectively. Structural similarity can be determined by atom-by-atom matching that re
sults, for example, in a chemical-similarity score or by identifying core molecular structures or functional 
groups that are thought to be important in conferring toxicity potentiaL There should also be a considera
tion of physicochemical similarity among analogues because significant differences in, for example, parti
tion coefficients (such as logKow, a measure of lipophilicity) will have important effects on pharmacoki
netic and often pharmacodynamic behavior of a chemicaL Read-across approaches are receiving much 
attention because they can help to satisfy the information requirements under European Union Registra
tion, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulations; the general concept 
has been accepted by the European Chemicals Agency (ECHA) and member-state authorities (Patlewicz 
et aL 2013). When robust toxicological data are available on one or more structurally related chemicals, 
they can be used to infer the activity of a chemical that has not been adequately tested. ECHA (2015) has 
recently published a framework by which it evaluates read-across submissions under REACH. ECHA's 
framework groups the read-across into six categories according to such factors as whether the read-across 
is for a single analogue or an entire category, whether it is based on metabolism to a common product, 
and the relative potencies of members of a chemical series. 

Phthalate esters provide a well-studied example of the utility of read-across for male reproductive 
toxicity. Phthalate esters that have chain lengths of four to six carbons (more if branched) cause testicular 
toxicity (Foster et al. 1980) and adverse effects on male reproductive-system development (Gray et al. 
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2000; NRC 2008) in rats. Studies of global gene expression in the fetal rat testis show comparable effects 
of all the developmentally toxic phthalates (Liu et al. 2005) and support a conclusion that these chemicals 
act via the same mechanism. Phthalate esters with shorter chains, such as dimethyl and diethyl phthalate, 
do not produce similar effects on gene expression or on testicular function or male reproductive-system 
development. Thus, well-studied phthalate esters in this group would serve as anchor chemicals for other 
phthalates that have chains of four to six carbons in a read-across approach. 

Read-across can be problematic, and caution is needed before its conclusions are relied on heavily. 
For example, thalidomide has two stereoisomers, (S)-thalidomide and (R)-thalidomide, that are virtually 
identical from a structural perspective in all aspects except for the 3-D orientation of the two ring systems 
in relation to one another (see Figure 3-7). Their physical characteristics are also identical, so read-across 
analysis might conclude that the chemicals will have similar or identical safety profiles. However, (S)
thalidomide causes birth defects, embryo death or altered development, growth retardation, and functional 
defects, whereas (R)-thalidomide does not. Still, the enantiomers are capable of interconverting in vivo, so 
it is impossible to eliminate the teratogenic effects by administering only the (R)-enantiomer. 

Despite the limitations, read-across remains a screening approach for assessing the safety of a mole
cule in the absence of data on which to base an assessment. The 2015 ECHA framework provides guidance 
on how protein binding, metabolism, and other data can be used in read-across analyses and potentially 
overcome the limitations. Furthermore, a recent European study team proposed evaluation of read-across for 
four basic chemical-group scenarios (Berggren et al. 2015): chemicals that do not undergo metabolism to 
exert toxicity, that exert their toxicity through the same or structurally similar metabolites, that have low 
toxicity, or that are structurally similar but have variable toxicity on the basis of their hypothesized mecha
nism. They have selected chemical groups for case studies in each of the four categories. 

Low et al. (20 13) extended the concept of similarity in read-across from chemical structure to bioac
tivity, specifically responses in a variety of in vitro and genomic assays. They proposed a hazard classifi
cation and visualization method that draws on both chemical structure and biological features to establish 
similarity among chemicals in read-across. The approach incorporates mechanistic data to increase the 
confidence of read-across. 

In addition to serving as a screening approach, read-across can be regarded as a hypothesis
generating exercise. The hypotheses can be lumped into two broad categories: the new chemical is me
tabolized to a chemical that has already been tested (or it and its analogue are metabolized to the same 
chemical), or the new chemical and its analogues are sufficiently similar in chemical structure and proper
ties that their biological activity is the same (that is, they have the same mechanism). In the former case, 
there are long-standing methods for assessing chemical metabolism that can be applied to support or re
fute the hypothesis that the new chemical is metabolized to something that has already been tested. In the 
latter case, if the mechanism of the analogous chemicals is known, it is reasonably straightforward to test 
for effects on the initial events of the mechanism (for example, receptor occupancy or enzyme inhibition). 
In most cases, however, mechanisms are not known; in such cases, it is still possible to compare the re
sponses of the chemical and its analogues in screening systems that globally assess toxicological respons
es. Global gene-expression analysis is likely to provide universal coverage of possible mechanisms. Gene 
expression in an animal model in which the target tissues (for the tested analogues) are known or in an in 
vitro system that represents the target tissue is a reasonable way to test the hypothesis of a comparable 
mechanism among analogues. It still might be possible to use gene expression in in vitro models to identi
fy a mechanism when target tissue is not known, but it will probably require testing in more than one cell 
type. Lamb et al. (2006) evaluated the gene-expression changes elicited in four cell types by a large num
ber of drugs; they clearly showed the connections between agents that have the same pharmacological 
action and demonstrated that this approach has high potential for toxicology. High-throughput screening 
batteries, such as ToxCast, might also have utility for that purpose, but it will need to be determined 
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(i) S-thalidomide (ii) R-thalidomide 

FIGURE 3-7 Molecular structures of (S)-thalidomide and (R)-thalidomide. 

whether the current battery covers the universe of known toxicity mechanisms. Higher-order models, such 
as organ-on-a-chip or zebrafish, might also be used for testing hypotheses of biological similarity if it can 
be shown that these models have the biological machinery that is critical for the mechanism in question. 
As data streams are added more systematically to the read-across process, integrated approaches, such as 
Bayesian models, that provide for a more agnostic evaluation and promote consistency in output could be 
developed. Figure 3-8 illustrates several scenarios for read-across and how it can be used to infer hazard 
and dose-response relationships. 

INCORPORATING DATA STREAMS 

Various chemicals will have multiple data streams along the exposure-to-outcome continuum that 
can be used to characterize hazard or risk. For example, pharmacokinetic studies might point to tissues 
that have particularly high concentrations of a chemical that are potentially increased by active transport 
as indicated in in vitro studies. Cell-free assays might suggest a set of key receptors, with cell-response 
assays indicating response; the results, when considered in the context of high concentrations of a chemi
cal in tissues, might indicate particular hazards, such as particular cancers or reproductive toxicity. Tar
geted studies might show early markers of effect histopathologically, and gene expression in the studies 
might show consistency with the findings of cell-based assays. The results might be supported by findings 
on similar chemicals that predict the activity through structure-activity analyses. Robust assessments will 
identify the more influential data streams with which to develop an integrated assessment. Some streams 
will be more information-rich than others. The integration of multiple data streams is discussed further in 
Chapter 7. 

CHALLENGES AND RECOMMENDATIONS FOR ADVANCING TOXICOLOGY 

This chapter shows how emerging scientific tools generate toxicological evidence on hazard and 
dose-response relationships of chemicals and other risk issues. It emphasizes how the tools apply to dif
ferent components in the exposure-to-outcome continuum. Some tools, such as PBPK and systems
biology models, provide a basis for linking components along the continuum. Others, such as high
throughput assays or targeted testing, provide a direct readout of chemical effect within a single compo
nent or in multiple components. The tools vary in their maturity for application, their scope of applicabil
ity among chemical classes, and the questions that they can address. The committee emphasizes that the 
level of performance required for the various tools will depend on the question that is being addressed 
(context) and on agency policies. 

There are specific technical and research challenges. Some have been mentioned in preceding sec
tions of this chapter; the challenges related to molecular and cell-based assays are particularly notable. 
Some important challenges in advancing the tools for risk-assessment application are described below, 
and some recommendations are offered. 
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Read-Across Scenarios: 
Characteristics of Anchor 

and Data-Sparse (OS) 
Chemicals 

Inferring Hazard and Dose
Response Relationships for 
Data-Sparse (OS) Chemicals 

from Anchor Chemicals 

FIGURE 3-8 Scenarios for conducting read-across. 

Advancing the New Testing Paradigm 

Examples 

Challenge: Obtaining the vision described in the Tox2l report in which traditional whole-animal 
testing is replaced with a broad toxicity-testing strategy that uses primarily in vitro assays, computational 
methods, and targeted animal testing for assessing the biological activity of chemicals is a complex and 
labor-intensive task that requires focus, commitment, and resources (NRC 2007). The strategy for achiev
ing the vision involves research to understand the spectrum of perturbations that could result in human 
toxicity and the nature and extent of the toxicity caused by the perturbations and research to understand 
how determinants of human variability (for example, underlying nutritional, genetic, or disease state or 
life stage) and exposure duration might affect biological responses or toxicity. The scientific community 
needs to recognize that the current approach to toxicity testing and data analysis is often compartmental
ized, and this prevents a holistic approach in trying to determine toxicity of chemical exposure. 

Recommendation: Broad consideration of research that is needed to advance the development of a 
suite of tests that essentially achieves the vision in the Tox2l report is beyond the present committee's 
charge, but the committee notes that the research described above in the challenge statement should have 
high priority so that the vision can be achieved. The committee expresses its concurrence with the Tox2l 
committee and emphasizes that testing should not be limited to the goal of one-to-one replacement but 
rather should extend toward development of the most salient and predictive assays for the end point or 
disease being considered. 

Optimizing Tools to Probe Biological Response 

Challenge: Developing a comprehensive in vitro system that covers the important biological re
sponses to chemical exposure that contribute to human adverse health effects is a considerable challenge. 
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Most assays used in the ToxCast program were developed to meet the needs of the pharmaceutical indus
try and were not designed to cover the full array of biological response, given the extensive testing in 
whole animals and humans that is conducted for drug development. Thus, not all major forms of toxicity 
are captured in the current assays, and correlating tested activities with toxicity-hazard traits has been lim
ited. For example, few or no ToxCast or Tox21 assays test for several of the key characteristics of carcin
ogenesis (Smith et al. 20 16). There is also the question of how short-term assay exposures are related to 
chronic exposure or developmental exposures in vivo. Responses that depend on higher levels of biologi
cal complexity could be missed by cell-based assays. A number of issues for assay development acknowl
edged in NRC (2007) remain, including coverage of the necessary biological space to ensure that human 
sensitivity and susceptibility to toxicants are adequately captured. 

Recommendation: Whole-animal testing should move beyond standard approaches, including those 
associated with experimental design and statistical methods, to maximize their utility. An array of whole
animal tools are now available, and their adoption could address knowledge gaps in risk assessment more 
comprehensively and begin to address the breadth of genetic sensitivity in response to chemical exposure 
and other contributors to human variability in response. Guidance for incorporating these whole-animal 
tools into risk assessment would likely speed their adoption and use. 

Recommendation: Use of targeted rodent tests that incorporate the use of -omics technologies, such 
as sentinel-tissue transcriptomics, should be encouraged. The experimental design should include strate
gies for data interpretation and analysis, such as Bayesian approaches, that are specifically developed for 
these studies. Strategic whole-animal testing could help to identify the broader suite of pathways that are 
beyond the scope of current molecular and cell-based tests, guide the development of in vitro assays that 
could enhance confidence in extrapolating from in vitro tests to whole-animal responses, and provide a 
stronger basis of hazard identification and dose-response assessment. 

Recommendation: Tools for probing genomic, epigenetic, transcriptomic, proteomic, and metabo
lomic changes in cells should be advanced because they provide an opportunity to assess cellular changes 
in a nontargeted and non-pathway-specific manner. Because virtually all toxicity is accompanied by spe
cific changes in gene expression (and presumably changes in protein expression and metabolic profile), 
continued exploration of these in vivo and in vitro approaches as standalone screens or as complements to 
in vitro screens might be a way to cover more biological space.5 

Understanding and Addressing Limitations of Cell Systems 

Challenge: Substantial progress has been made in developing and adapting a wide array of assays 
for screening environmental chemicals, but cell cultures have several important limitations. There are 
challenges in incorporating metabolic capacity into the assays to ensure that assay conditions generate 
chemical exposures that are representative of the exposures in humans that could lead to toxicity. Cell 
cultures also tend to be extremely sensitive to environmental conditions; changes in microenvironments 
can alter cellular phenotypes and responses and result in skewed results of toxicity screens. Furthermore, 
conventional monolayer cultures are less sensitive than 3-D cultures, and the response obtained from an in 
vitro assay can depend on the cell type that is used-a liver cell vs a neuron or a primary cell vs an im
mortalized cell. Current in vitro assays evaluate only chemicals that have particular properties; chemicals 
typically must be soluble in dimethyl sulfoxide, have low volatility, meet molecular-weight cutoffs, and 
be available in high enough quantity and purity. 

5If in vitro methods are used for this purpose, it will be important to identify the minimum number of cell types 
necessary for full coverage. Identifying the cell types will require a combination of statistical approaches that retro
spectively analyze the available transcriptomic data and prospective experimentation to determine the number of cell 
types that are responsive to a broad array of mechanisms. High-content imaging techniques that capture effects on 
multiple cellular-toxicity indicators simultaneously-including mitochondrial integrity, cell viability, lipid accumu
lation, cytoskeletal integrity, and formation of reactive oxygen species (Grimm et al. 2015~an also be used for 
non targeted screening and offer the potential to integrate multiple aspects of cell function. 
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Recommendation: Formalized approaches should be developed to characterize the metabolic compe
tence of assays, to determine for which assays metabolic competence is not an essential consideration, 
and to account for the toxicity of metabolites appropriately. Approaches could include the development 
and application of better in silico methods for predicting metabolism and elimination and the development 
of methods for including metabolic capability without compromising other aspects of assay performance. 
Federal agencies have initiated some research to address the metabolic-capacity issue, and the committee 
recommends that the research have high priority. 

Recommendation: Research should be conducted to understand the breadth of cell types needed to 
capture toxicity that might occur only with specific cell lines. It is possible to identify common pathways 
of toxicity that exist in all cell types, but biology specific to cell types could be of great use in identifying 
organ-specific toxicities. 

Recommendation: Cell batches-even those from established cell lines-should be characterized 
sufficiently before, during, and after experimentation. Genetic variability, phenotypic characteristics, and 
purity should be reported in published literature or on publicly accessible Web sites or interfaces. 

Recommendation: Assay development should be coordinated with development of computational 
models of cellular responses involved in pathway perturbations to promote deeper understanding of 
shapes of dose-response curves at the cellular level. 

Addressing the Whole Human and the Human Population 

Challenge: The exposure-to-outcome continuum in reality can be complex. Chemicals can perturb 
multiple pathways and lead to various forms of toxicity. Furthermore, toxicity can be influenced by genet
ics, diet, lifestyle choices, social factors, sex, life stage, health status, and past and present exposures. All 
those factors can influence responses at different points in the exposure-to-outcome continuum and occur 
in the exposure milieu and context of human experience. 

Recommendation: Efforts to capture human variability better in in vitro and in vivo toxicity tests 
should be explored. Broader testing of multiple cell lines from diverse human populations could find idio
syncratic sensitivity of some populations, as has been seen in in vivo testing of panels of isogenic mouse 
strains, although this approach addresses only variability due to genetic factors for a single upstream end 
point. Approaches for better characterization of the variety of possible responses to chemicals in food, 
drugs, or the environment are needed. Experimental approaches could be coupled with computational ap
proaches for better characterization. 

Recommendation: Relatively low-cost, rapid molecular and cellular assays should be used to inves
tigate the toxicity of chemical mixtures. Furthermore, humans are not exposed to single chemicals in iso
lation but instead are constantly exposed to myriad chemicals in their environment, endogenous chemicals 
produced in the body or modulated as a consequence of social and behavioral factors, and complex chem
ical mixtures. Cell-based assays can be used to explore at the molecular and pathway level how the addi
tion of a chemical exposure to existing exogenous and endogenous exposures might contribute to risk. 

REFERENCES 

Abdo, N., M. Xia, C.C. Brown, 0. Kosyk, R. Huang, S. Sakamum, Y.H. Zhou, J.R. Jack, P. Gallins, K. Xia, Y. Li, 
W.A. Chiu, A.A. Motsinger-Reif, C.P. Austin, R.R. Tice, I. Rusyn, and F.A. Wright. 2015. Population-based 
in vitro hazard and concentration-response assessment of chemicals: The 1000 genomes high-throughput 
screening study. Environ. Health Perspect. 123(5):458-466. 

Ablain, J., and L.I. Zon. 2013. Of fish and men: Using zebrafish to fight human diseases. Trends Cell. Biol. 
23(12):584-586. 

Al-Imari, L., and R. Gerlai. 2008. Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). 
Behav. Brain. Res. 189(1):216-219. 

Alon, U. 2007. Network motifs: Theory and experimental approaches. Nat. Rev. Genet. 8(6):450-461. 

82 Prepublication Copy 

ED_001449_00000002 



Advances in Toxicology 

Alves, V.M., E. Murastov, D. Fourches, J. Strickland, N. Kleinstreuer, C.H. Andrade, and A. Tropsha. 2015. Pre
dicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to 
identify potentially hazardous compounds. Toxicol. Appl. Pharmacol. 284(2):262-272. 

An, W.F., and N. Tolliday. 2010. Cell-based assays for high-throughput screening. Mol. Biotechnol. 45(2):180-186. 
Andersen, M.E. and D. Krewski. 2009. Toxicity testing in the 21st century: Bringing the vision to life. Toxicol. Sci. 

107(2):324-330. 
Andersen, M.E., K. Betts, Y. Dragan, S. Fitzpatrick, J.L. Goodman, T. Harttmg, J. Himmelfarb, D.E. Ingber, A. Ja

cobs, R. Kavlock, K. Kolaja, J.L. Stevens, D. Tagle, D. Lansing Taylor, and D. Throckmorton. 2014. Devel
oping microphysiological systems for use as regulatory tools - challenges and opportunities. AL TEX 
31(3):364-367. 

Anson, B.D., K.L. Kolaja, and T.J. Kamp. 2011. Opportunities for use of human iPS cells in predictive toxicology. 
Clin. Phannacol. Ther. 89(5):754-758. 

Arai, K., R. Sakamoto, D. Kubota, and T. Kondo. 2013. Proteomic approach toward molecular backgrounds of drug 
resistance of osteosarcoma cells in spheroid culture system. Proteomics 13( 15) :2351-2360. 

Arnaout, R., T. Ferrer, J. Huisken, K. Spitzer, D.Y.R. Stainier, M. Tristani-Firouzi, and N.C. Chi. 2007. Zebrafish 
model for hmnan long QT syndrome. Proc. Natl. Acad. Sci. U.S.A. 104(27):11316-11321. 

Arnaout, R., S., Reischauer, and D.Y. Stainier. 2014. Recovery of adult zebrafish hearts for high-throughput applica
tions. J. Vis. Exp. 94:e52248. 

Asnani, A., and R.T. Peterson. 2014. The zebrafish as a tool to identify novel therapies for human cardiovascular 
disease. Dis. Model Mech. 7(7):763-767. 

Asphahani, F., M. Thein, K. Wang, D. Wood, S.S. Wong, J. Xu, and M. Zhang. 2012. Real-time characterization of 
cytotoxicity using single-cell impedance monitoring. Analyst. 137(13):3011-3019. 

Astashkina, A., B. Mann, and D.W. Grainger. 2012. A critical evaluation of in vitro cell culture models for high
throughput drug screening and toxicity. Pharmacol. Ther. 134(1):82-106. 

Beers, J., K.L. Linask, J.A. Chen, L.I. Siniscalchi, Y. Lin, W. Zheng, M. Rao, and G. Chen. 2015. A cost-effective 
and efficient reprogramming platfonn for large-scale production of integration-free human induced pluripotent 
stem cells in chemically defined culture. Sci. Rep. 5: 11319. 

Bender, A., J. Scheiber, M. Glick, J.W. Davies, K. Azzaoui, J. Hamon, L. Urban, S. Whitebread, and J.L. Jenkins. 
2007. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from 
chemical structure. Chem. Med. Chem. 2(6): 861-873. 

Bento, A.P., A. Gaulton. A. Hersey, L.J. Bellis, J. Chambers, M. Davies, F.A. Kruger, Y. Light, L. Mark, S. 
McGlinchey, M. Nowotka, G. Papadatos, R. Santos, and J.P. Overington. 2014. The ChEMBL bioactivity da
tabase: An update. Nucleic Acids Res. 42:D1083-D1090. 

Berg, E.L., M.A. Polokoff, A. O'Mahony, D. Nguyen, and X. Li. 2015. Elucidating mechanisms of toxicity using 
phenotypic data from primary human cell systems--a chemical biology approach for thrombosis-related side 
effects. Int. J. Mol. Sci. 16(1):1008-1029. 

Berggren, E., P. Amcoff, R. Benigni, K. Blackbmn, E. Carney, M. Cronin, H. Deluyker, F. Gautier, R.S. Judson, 
G.E. Kass, D. Keller, D. Knight, W. Lilienblum, C. Mahony, I. Rusyn, T. Schultz, M. Schwarz, G. Schufu
mann, A. White, J. Burton, A.M. Lostia, S. Munn, and A. Worth. 2015. Chemical safety assessment using 
read-across: Assessing the use of novel testing methods to strengthen the evidence base for decision making. 
Environ. Health Perspect. 123(12): 1232-1240. 

Best, J.D., S. Berghmans, J.J. Hunt, S.C. Clarke, A. Fleming, P. Goldsmith, and A.G. Roach. 2008. Non-associative 
learning in larval zebrafish. Neuropsychopharmacology 33(5):1206-1215. 

Bhogal, N., C. Grindon, R. Combes, and M. Balls. 2005. Toxicity testing: Creating a revolution based on new tech
nologies. Trends Biotechnol. 26(6):299-307. 

Birnbaum, L. 2011. Presentation at NIEHS Workshop: Engineered Tissue Models for Enviromnental Health Science 
Research, June 27-28, 2011, Washington, DC. 

Boverhof, D.R., M.P. Chamberlain, C.R. Elcombe, F.J. Gonzalez, R.H. Heflich, L.G. Hernandez, A.C. Jacobs, D. 
Jacobson-Kram, M. Luijten, A. Maggi, M.G. Manjanatha, J. Benthem, and B.B. Gollapudi. 2011. Transgenic 
animal models in toxicology: Historical perspectives and future outlook. Toxicol. Sci. 121(2):207-233. 

Bowes, J., A.J. Brown, J. Hamon, W. Jarolimek, A. Sridhar, G. Waldron, and S. Whitebread. 2012. Reducing safety
related drug attrition: The use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11(12):909-922. 

Bradford, B.U., E.F. Lock, 0. Kosyk, S. Kim, T. Uehara, D. Harbourt, M. DeSimone, D.W. Threadgill, V. 
Tryndyak, I.P. Pogribny, L. Bleyle, D.R. Koop, and I. Rusyn. 2011. Interstrain differences in the liver effects 
of trichloroethylene in a multistrain panel of inbred mice. Toxicol. Sci. 120(1): 206-217. 

Prepublication Copy 83 

ED_001449_00000002 



Using 21st Century Science to Improve Risk-Related Evaluations 

Braga, R.C., V.M. Alves, M.F. Silva, E. Muratov, D. Fourches, A. Tropsha, and C.H. Andrade. 2014. Tuning hERG 
out: Antitarget QSAR models for drug development. Curr. Top Med. Chern. 14(11):1399-1415. 

Bretaud, S., S. Lee, and S. Guo. 2004. Sensitivity of zebrafish to enviromnental toxins implicated in Parkinson's 
disease. Neurotoxicol. Teratol. 26(6):857-864. 

Browne, P., R.S. Judson, W.M. Casey, N.C. Kleinstreuer, and R.S. Thomas. 2015. Screening chemicals for estrogen 
receptor bioactivity using a computational model. Environ. Sci. Technol. 49(14):8804-8814. 

Bulysheva, A.A., G.L. Bowlin, S.P. Petrova, and W.A. Yendall. 2013. Enhanced chemoresistance of squamous car
cinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed. Mater. 8(5):055009. 

Champagne, D.L., C. C. Hoefnagels, R.E. de Kloet, and M.K. Richardson. 2010. Translating rodent behavioral reper
toire to zebrafish (Dania rerio): Relevance for stress research. Behav. Brain Res. 214(2):332-342. 

Chanut, F., C. Kimbrough, R. Hailey, B. Berridge, A. Hughes-Earle, R. Davies, K. Roland, A. Stokes, A. Casartelli, 
M. York, H. Jordan, F. Crivellente, P. Cristofori, H. Thomas, J. Klapwijk, and R. Adler. 2013. Spontaneous 
cardiomyopathy in young Sprague-Dawley rats: Evaluation of biological and enviromnental variability. Toxi
col. Pathol. 41(8):1126-1136. 

Chapman, A.L., E.J. Bennett, T.M. Ramesh, K.J. DeVos, and A.J. Grierson. 2013. Axonal transport defects in a 
mitofusin 2loss offunction model ofCharcot-Marie-Tooth disease in zebrafish. PLoS One 8(6):e67276. 

Chen, J., S.R. Das, J. La Du, M.M. Corvi, C. Bai, Y. Chen, X. Liu, G. Zhu, R.L. Tanguay, Q. Dong, and C. Huang. 
2013. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce 
malformation and behavioral deficits in Fl offspring. Environ. Toxicol. Chem. 32(1):201-206. 

Chen, J., J. Wang, Y. Zhang, D. Chen, C. Yang, C. Kai, X. Wang, F. Shi, and J. Dou. 2014. Observation of ovarian 
cancer stem cell behavior and investigation of potential mechanisms of drug resistance in three-dimensional 
cell culture. J. Biosci. Bioeng. 118(2):214-222. 

Cheng, F., Y. Zhou, J. Li, W. Li, G. Liu, andY. Tang. 2012. Prediction of chemical-protein interactions: Multitar
get-QSAR versus computational chemogenomic methods. Mol. Biosyst. 8(9):2373-2384. 

Chico, T.J., P.W. Ingham, and D.C. Crossman. 2008. Modeling cardiovascular disease in the zebrafish. Trends Car
diovasc. Med. 18(4):150-155. 

Chiu, W.A., J. Jinot, C.S. Scott, S.L. Makris, G.S. Cooper, R.C. Dzubow, A.S. Bale, M.V. Evans, K.Z. Guyton, N. 
Keshava, J.C. Lipscomb, S. Barone Jr., J.F. Fox, M.R. Gwinn, J. Schaum, and J.C. Caldwell. 2013. Hmnan 
health effects of trichloroethylene: Key findings and scientific issues. Environ. Health Perspect. 121(3):303-
311. 

Churchill, G.A., D.C. Airey, H. Allayee, J.M. Angel, A.D. Attie, J. Beatty, W.D. Beavis, J.K. Belknap, B. Bennett, 
W. Berrettini, A. Bleich, M. Bogue, K.W. Broman, K.J. Buck, E. Buckler, M. Burmeister, E.J. Chesler, J.M. 
Cheverud, S. Clapcote, M.N. Cook, R.D. Cox, J.C. Crabbe, W.E. Crusio, A. Darvasi, C.F. Deschepper, R.W. 
Doerge, C.R. Farber, J. Forejt, D. Gaile, S.J. Garlow, H. Geiger, H. Gershenfeld, T. Gordon, J. Gu, W. Gu, G. 
de Haan, N.L. Hayes, C. Heller, H. Himmelbauer, R. Hitzemann, K. Hunter, H.C. Hsu, F.A. Iraqi, B. Ivandic, 
H.J. Jacob, R.C. Jansen, K.J. Jepsen, D.K. Johnson, T.E. Johnson, G. Kemperrnann, C. Kendziorski, M. Kotb, 
R.F. Kooy, B. Llamas, F. Lammert, J.M. Lassalle, P.R. Lowenstein, L. Lu, A. Lusis, K.F. Manly, R. Mar
cucio, D. Matthews, J.F. Medrano, D.R. Miller, G. Mittleman, B.A. Mock, J.S. Mogil, X. Montagutelli, G. 
Morahan, D.G. Morris, R. Mott, J.H. Nadeau, H. Nagase, R.S. Nowakowski, B.F. O'Hara, A.V. Osadchuk, 
G.P. Page, B. Paigen, K. Paigen, A.A. Palmer, H.J. Pan, L. Peltonen-Palotie, J. Peirce, D. Pomp, M. Pravenec, 
D.R. Prows, Z. Qi, R.H. Reeves, J. Roder, G.D. Rosen, E.E. Schadt, L.C. Schalkwyk, Z. Seltzer, K. Shimomu
ra, S. Shou, M.J. Sillanpaa, L.D. Siracusa, H.W. Snoeck, J.L. Spearow, K. Svenson, L.M. Tarantino, D. 
Threadgill, L.A. Toth, W. Valdar, F.P. de Villena, C. Warden, S. Whatley, R.W. Williams, T. Wiltshire, N. 
Yi, D. Zhang, M. Zhang, F. Zou, and Complex Trait Consortium. 2004. The collaborative cross, a community 
resource for the genetic analysis of complex traits. Nat. Genet. 36(11): 1133-1137. 

Churchill, G.A., D.M. Gatti, S.C. Munger, and K.L. Svenson. 2012. The diversity outbred mouse population. 
Marum. Genome 23(9-10): 713-718. 

Colley, H., D. James, K. Diment, and M. Tedder. 2007. Learning as becoming in vocational education and training: 
Class, gender and the role of vocational habitus. J. Voc. Educ. Train. 55(4):471-498. 

Contrera, J.F., P. MacLaughlin, L.H. Hall, and L.B. Kier. 2005. QSAR modeling of carcinogenic risk using 
discriminant analysis and topological molecular descriptors. Curr. Drug Discov. Technol. 2(2):55-67. 

Cote, 1., M.E. Andersen, G.T. Ankley, S. Barone, L.S. Birnbaum, K. Boekelheide, F.Y. Bois, L.D. Burgoon, W.A. 

84 

Chiu, D. Crawford-Brown, K.M. Crofton, M. DeVito, R.B. Devlin, S.W. Edwards, K. Guyton, D. Hattis, R.S. 
Judson, D. Knight, D. Krewski, J. Lambert, E.A. Maull, D. Mendrick, G.M. Paoli, C.J. Patel, E. Perkins, G. 
Poje, C.J. Portier, I. Rusyn, P.A. Schulte, A. Simeonov, M.T. Smith, K. Thayer, R.S. Thomas, R. Thomas, 
R.R. Tice, J.J. Vandenberg, D. Villeneuve, S. Wesselkamper, M. Whelan, C. Whittaker, R. White, M. Xia, C. 

Prepublication Copy 

ED_001449_00000002 



Advances in Toxicology 

Yauk, L. Zeise, J. Zhao, and R. DeWoskin. 2016. The next generation of risk assessment multiyear study
highlights of findings, applications to risk assessment and future directions. Environ. Health Perspect. 
121(11):1671-1682. 

Crosby, E.B., J.M. Bailey, A.N. Oliveri, and E.D. Levin. 2015. Neurobehavioral impairments caused by 
developmental imidacloprid exposure in zebrafish. Neurotoxicol. Teratol. 49:81-90. 

Cui, C., E.L. Benard, Z. Kanwal, O.W. Stockhammer, M. van der Vaart, A. Zakrzewska, H.P. Spaink, and A.H. 
Meijer. 2011. Infectious disease modeling and innate immune function in zebrafish embryos. Methods Cell 
Biol.l05:273-308. 

DaCosta, M.M., C.E. Allen, A. Higginbottom, T. Ramesh, P.J. Shaw, and C.J. McDermott. 2014. A new zebrafish 
model produced by TILLING of SODl-related amyotrophic lateral sclerosis replicates key features of the 
disease and represents a tool for in vivo therapeutic screening. Dis. Model Mech. 7(1):73-81. 

Dalgin, G., and V.E. Prince. 2015. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates. 
Dev. Biol. 402(1):81-97. 

De Vooght, V., J. A. Vanoirbeek, K. Luyts, S. Haenen, B. Nemery, and P.H. Hoet. 2010. Choice of mouse strain 
influences the outcome in a mouse model of chemical-induced asthma. PLoS One 5(9):el2581. 

Dong, H., W. Xu, J.K. Pillai, C. Packianathan, and B.P. Rosen. 2015. High-throughput screening-compatible assays 
of As(III) S-adenosylmethionine methyltransferase activity. Anal. Biochem. 480:67-73. 

Dooley, K., and L.I. Zon. 2000. Zebrafish: A model system for the study of human disease. Curr. Opin. Genet. Dev. 
10(3):252-256. 

Dow, L.E., J. Fisher, K.P. O'Rourke, A. Muley, E.R. Kastenhuber, G. Livshits, D.F. Tschaharganeh, N.D. Socci and 
S.W. Lowe. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33(4):390-394. 

ECHA (European Chemicals Agency). 2015. Read-Across Assessment Framework (RAAF) [online]. Available: 
http:/!echa.europa.eu/documents/10162/13628/raaf_en.pdf [accessed July 19, 2016]. 

Edmondson, R., J.J. Broglie, A.F. Adcock, and L. Yang. 2014. Three-dimensional cell culture systems and their 
applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12(4):207-218. 

Efthymiou, A., A. Shaltouki, J.P. Steiner, B. Jha, S.M. Heman-Ackah, A. Swistowski, X. Zeng, M.S. Rao, and N. 
Malik. 2014. Functional screening assays with neurons generated from pluripotent stem cell-derived neural 
stem cells. J. Biomol. Screen. 19(1):32-43. 

Egan, R.J., C.L. Bergner, P.C. Hart, J.M. Cachat, P.R. Canavello, M.F. Elegante, S.I. Elkhayat, B.K. Bartels, A.K. 
Tien, D.H. Tien, S. Mohnot, E. Beeson, E. Glasgow, H. Amri, Z. Zukowska, and A.V. Kalueff. 2009. Under
standing behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 
205(1):38-44. 

Engeszer, R.E., L.A. da Barbiano, M.J. Ryan, and D.M. Parichy. 2007. Timing and plasticity of shoaling behaviour 
in the zebrafish, Dania rerio. Anim. Behav. 74(5):1269-1275. 

EPA (US Enviromnental Protection Agency). 2010. Toxicological Review of Acrylamide (CAS No. 79-06-1). 
EP A/635/R-07 /009F [online]. Available: https:/ /cfj.mb.epa.gov/ncea/iris/iris _ documents/documents/toxreviews/0 
286tr.pdf[accessed July 19, 2016]. 

EPA (US Enviromnental Protection Agency). 2014a. FIFRA Scientific Advisory Panel Minutes No. 2015-01: A Set 
of Scientific Issues Being Considered by the Environmental Protection Agency Regarding Integrated Endo
crine Bioactivity and Exposure-Based Prioritization and Screening, FIFRA Scientific Advisory Panel Meeting, 
December 2-4, 2014, Arlington, VA [online]. Available: https://www.epa.gov/sites/production/files/2015-
06/documents/120214minutes.pdf [accessed July 19, 20 16]. 

EPA (US Environmental Protection Agency). 2014b. Next Generation Risk Assessment: Incorporation of Recent 
Advances in Molecular, Computational, and Systems Biology. EPA/600/R-14/004. National Center for Envi
romnental Assessment, Office of Research and Development, U.S. Enviromnental Protection Agency, Wash
ington, DC [online]. Available: https://cfj.mb.epa.gov/si/si_public_record_report.cfin?dirEntryid=286690 [ac
cessed July 19, 2016]. 

EPA (US Enviromnental Protection Agency). 2015. Use of High Throughput Assays and Computational Tools in 
the Endocrine Disruptor Screening Program-Overview [online]. Available: https:/ /www.epa.gov/endocrine
disruption!use-high-throughput-assays-and-computational-tools-endocrine-disruptor [accessed December 1, 
2016]. 

EP A/NIH/NCATS/NTP (US Enviromnental Protection Agency, National Institutes of Health, National Center for 
Advancing Translational Sciences, and National Toxicology Program). 2016. Transfonn Tox Testing Chal
lenge: Innovating for Metabolism-Challenge Overview [online]. Available: https://www.challenge.gov/wp
content/uploads/2016/09/Transform-Tox-Testing-Challenge-Brief. pdf [accessed October 14, 2016]. 

Prepublication Copy 85 

ED_001449_00000002 



Using 21st Century Science to Improve Risk-Related Evaluations 

Esch, E.W., A. Babinski, and D. Huh. 2015. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Dis
cov. 14:248-260. 

EU (European Union). 2015. Mechanism Based Integrated Systems for the Prediction of Drug Induced Liver Injury 
[online]. Available: http://www.mip-dili.eu/ [accessed July 19, 2016]. 

Feitsma, H., and E. Cuppen. 2008. Zebrafish as a cancer model. Mol. Cancer Res. 6(5):685-694. 
Feliu, N., P. Kohonen, J. Ji, Y. Zhang, H.L. Karlsson, L. Palmberg, A. Nystrom, and B. Fadeel. 2015. Next

generation sequencing reveals low-dose effects of cationic dendrimers in primary human bronchial epithelial 
cells. ACS Nano. 9(1):146-163. 

Fernandes, Y., S. Tran, E. Abraham, and R. Gerlai. 2014. Embryonic alcohol exposure impairs associative learning 
performance in adult zebrafish. Behav. Brain Res. 265:181-187. 

Festing, M.F. 2010. Improving toxicity screening and drug development by using genetically defined strains. 
Methods Mol. Biol. 602:1-21. 

Foster, P.M., L.V. Thomas, M.W. Cook, and S.D. Gangolli. 1980. Study of the testicular effects and changes in zinc 
excretion produced by some n-alkyl phthalates in the rat. Toxicol. Appl. Pharmacol. 54(3):392-398. 

French, J.E., D.M. Gatti, D.L. Morgan, G.E. Kissling, K.R. Shockley, G.A. Knudsen, K.G. Shepard, H.C. Price, D. 
King, K.L. Witt, L.C. Pedersen, S.C. Munger, K.L. Svenson, and G.A. Churchill. 2015. Diversity outbred 
mice identify population-based exposure thresholds and genetic factors that influence benzene-induced 
genotoxicity. Environ. Health Perspect. 123(3) :23 7-245. 

Gallardo, V.E., G.K. Varshney, M. Lee, S. Bupp, L. Xu, P. Shinn, N.P. Crawford, J. Inglese, and S.M. Burgess. 
2015. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration 
identifies multiple pathways potentially involved in metastatic invasion. Dis. Model Mech. 8(6):565-576. 

Gavaghan, C. 2007. Practical Considerations in Using QSARs in Pharmaceutical Safety Assessment [online]. 
Available: http://www.ukqsar.org/slides/ClaireGavaghan_2007.pdf. 

Gerlach, G., A. Hodgins-Davis, C. Avolio, and C. Schunter. 2008. Kin recognition in zebrafish: A 24-hour window 
for olfactory imprinting. Proc. Biol. Sci. 275(1647):2165-2170. 

Gieseck, R.L., III, N.R. Hannan, R. Bort, N.A. Hanley, R.A. Drake, G.W. Cameron, T.A. Wynn, and L. Vallier. 
2014. Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS One 9(1):e86372. 

Gieseck, R.L., III, L. Vallier, and N.R. Hannan. 2015. Generation of hepatocytes from pluripotent stem cells for 
drug screening and developmental modeling. Methods Mol. Biol. 1250:123-142. 

Godderis, L., R. Thomas, A.E. Hubbard, A.M. Tabish, P. Hoet, L. Zhang, M.T. Smith, H. Veulemans, and C.M. 
McHale. 2012. Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells. 
PLOS One 7(6):e39205. 

Goldstone, J.V., A.G. McArthur, A. Kubota, J. Zanette, T. Parente, M.E. Jonsson, D.R. Nelson, and J.J. Stegeman. 
2010. Identification and developmental expression of the full complement of cytochrome P450 genes in 
zebrafish. BMC Genomics 11 :643. 

Gordon, M.W., F. Yan, X. Zhong, P.B. Mazumder, Z.Y. Xu-Monette, D. Zou, K.H. Young, K.S. Ramos, andY. Li. 
2015. Regulation of p53-targeting microRNAs by polycyclic aromatic hydrocarbons: Implications in the 
etiology of multiple myeloma. Mol. Carcinog. 54(10):1060-1069. 

Graham, J.B., S. Thomas, J. Swarts, A.A. McMillan, M.T. Ferris, M.S. Suthar, P.M. Treuting, R. Ireton, M. Gale, 
Jr., and J.M. Lund. 2015. Genetic diversity in the collaborative cross model recapitulates human West Nile 
virus disease outcomes. MBio 6(3):e00493-15. 

Gray, L.E., J. Ostby, J. Furr, M. Price, D.N. Veeramacheni, and L. Parks. 2000. Perinatal exposure to the phthalates 
DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol. 
Sci. 58(2):350-365. 

Greene, N., L. Fisk, R.T. Naven, R.R. Note, M.L. Patel, and D.J. Pelletier. 2010. Developing structure-activity 
relaitonships for the preduction of hepatotoxicity. Chern. Res. Toxicol. 23(7): 1215-1222. 

Grimm, F.A., Y. Iwara, 0. Sirenko, M. Bittner, and I. Rusyn. 2015. High-content assay multiplexing for toxicity 
screening in induced pluripotent stem cell-derived cardiomyocytes and hepatocytes. Assay Drug Dev. 
Technol. 13(9):529-546. 

Guiro, K., S.A. Patel, S.J. Greco, P. Rameshwar, and T.L. Arinzeh. 2015. Investigating breast cancer cell behavior 
using tissue engineering scaffolds. PLoS One 10(3):e0118724. 

Gut, P., B. Baeza-Raja, 0. Andersson, L. Hasenkamp, J. Hsiao, D. Hesselson, K. Akassoglou, E. Verdin, M.D. 

86 

Hirschey, and D.Y. Stainier. 2013. Whole-organism screening for gluconeogenesis identifies activators of 
fasting metabolism. Nat. Chern. Biol. 9(2):97-104. 

Prepublication Copy 

ED_001449_00000002 



Advances in Toxicology 

Guyton, K.Z., W.A. Chiu, T.F. Bateson, J. Jinot, C.S. Scott, R.C. Brown, and J.C. Caldwell. 2009. A reexamination 
of the PP AR -alpha activation mode of action as a basis forassessing human cancer risks of enviromnental 
contaminants. Environ. Health Perspect. 117(11 ): 1664-1672. 

Harrill, A.H., P.B. Watkins, S. Su, P.K. Ross, D.E. Harbourt, I.M. Stylianou, G.A. Boorman, M.W. Russo, R.S. 
Sackler, S.C. Harris, P.C. Smith, R. Tennant, M. Bogue, K. Paigen, C. Harris, T. Contractor, T. Wiltshire, I. 
Rusyn, and D.W. Threadgill. 2009. Mouse population-guided resequencing reveals that variants in CD44 
contribute to acetaminophen-induced liver injury in humans. Genome Res. (9):1507-1515. 

Harris, P.A., C. Duraiswami, D.T. Fisher, J. Fomwald, S.J. Hoffinan, G. Hofinann, M. Jiang, R. Lehr, P.M. 
McCormick, L. Nickels, B. Schwartz, Z. Wu, G. Zhang, R.W. Marquis, JBertin, and P.J. Gough. 2015. High 
throughput screening identifies ATP-competitive inhibitors of the NLRPl inflammasome. Bioorg. Med. 
Chem. Lett. 25(14):2739-2743. 

Hewitt, M., S.J. Enoch, J.C. Madden, K.R. Przybylak, and M.T. Cronin. 2013. Hepatotoxicity: A scheme for genera
tion chemical categories for read-across, structural alerts and insights into mechanism(s) of action. Crit. Rev. 
Toxicol. 43(7):537-558. 

Hornung, M.W., M.A. Tapper, J.S. Denny, R.C. Kolanczyk, B.R. Sheedy, P.C. Hartig, H. Aladjov, T.R. Henry, and 
P.K. Schmieder. 2014. Effects-based chemical category approach for prioritization of low affinity estrogenic 
chemicals. SAR QSAR Environ. Res. 25(4):289-323. 

Rossini, A.M., M. Megges, A. Prigione, B. Lichtner, M.R. Toliat, W. Wruck, F. Schroter, P. Nuemberg, H. Kroll, E. 
Makrantonaki, C. C. Zouboulis, and J. Adjaye. 2015. Induced pluripotent stem cell-derived neuronal cells from 
a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. 
BMC Genomics 16:84. 

Houck, K.A., D.J. Dix, R.S. Judson, R.J. Kavlock, J. Yang, and E.L. Berg. 2009. Profiling bioactivity of the Tox
Cast chemical library using BioMAP primary human cell systems. J. Biomol. Screen 14(9):1054-1066. 

Howe, D.G., Y.M. Bradford, T. Conlin, A.E. Eagle, D. Fashena, K. Frazer, J. Knight, P. Mani, R. Martin, S.A. 
Moxon, H. Paddock, C. Pich, S. Ramachandran, B.J. Ruef, L. Ruzicka, K. Schaper, X. Shao, A. Singer, B. 
Sprunger, C.E. Van Slyke, and M. Westerfield. 2013a. ZFIN, the Zebrafish Model Organism Database: In
creased support for mutants and transgenics. Nucleic Acids Res. 41 :D854-D860. 

Howe, K., M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J.E. Collins, S. Humphray, K. McLaren, 
L. Matthews, S. McLaren, I. Sealy, M. Caccamo, C. Cbher, C. Scott, J.C. Barrett, R. Koch, G.J. Rauch, S. 
White, W. Chow, B. Kilian, L.T. Quintais, J.A. Guerra-Assuncao, Y. Zhou, Y. Gu, J. Yen, J.H. Vogel, T. 
Eyre, S. Redmond, R. Banerjee, J. Chi, B. Fu, E. Langley, S.F. Maguire, G.K. Laird, D. Lloyd, E. Kenyon, S. 
Donaldson, H. Sehra, J. Almeida-King, J. Loveland, S. Trevanion, M. Jones, M. Quail, D. Willey, A. Hunt, J. 
Burton, S. Sims, K. McLay, B. Plumb, J. Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, D. Elliot, G. 
Threadgold, G. Harden, D. Ware, S. Begum, B. Mortimore, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. 
Corby, M. Dunn, C. Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, M. Smith, R. Glithero, P. Howden, N. 
Barker, C. Lloyd, C. Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. 
Gordon, K. Auger, D. Wright, J. Collins, C. Raisen, L. Dyer, K. Leung, L. Robertson, K. Ambridge, D. 
Leongamomlert, S. McGuire, R. Gilderthorp, C. Griffiths, D. Manthravadi, S. Nichol, G. Barker, S. 
Whitehead, M. Kay, J. Brown, C. Muf31lle, E. Gray, M. Humphries, N. Sycamore, D. Barker, D. Saunders, J. 
Wallis, A. Babbage, S. Hammond, M. Mashreghi-Mohammadi, L. Barr, S. Martin, P. Wray, A. Ellington, N. 
Matthews, M. Ellwood, R. Woodmansey, G. Clark, J. Cooper, A. Tromans, D. Grafham, C. Skuce, R. 
Pandian, R. Andrews, E. Harrison, A. Kimberley, J. Garnett, N. Fosker, R. Hall, P. Gamer, D. Kelly, C. Bird, 
S. Palmer, I. Gehring, A. Berger, C.M. Dooley, Z. Ersan-Urun, C. Eser, H. Geiger, M. Geisler, L. Karotki, A. 
Kim, J. Konantz, M. Konantz, M. Oberlander, S. Rudolph-Geiger, M. Teucke, C. Lanz, G. Raddatz, K. 
Osoegawa, B. Zhu, A. Rapp, S. Widaa, C. Langford, F. Yang, S.C. Schuster, N.P. Carter, J. Harrow, Z. Ning, 
J. Herrero, S.M. Searle, A. Enright, R. Geisler, R.H. Plasterk, C. Lee, M. Westerfield, P.J. de Jong, L.I. Zon, 
J.H. Postlethwait, C. Nusslein-Volhard, T.J. Hubbard, H. Roest Crollius, J. Rogers, and D.L. Stemple. 2013b. 
The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496(7446):498-
503. 

Huh, D., G.A. Hamilton, and D.E. Ingber. 2011. From 3D cell culture to organs-on-chips. Trends Cell Biol. 
21(12):745-754. 

IARC (International Agency for Research on Cancer). 2006. Preamble. IARC Monographs on the Evaluation of 
Carcinogenic Risks to Humans. Lyon, France: IARC [online]. Available: http://monographs.iarc.fr/ENG/Pre 
amble/CurrentPreamble.pdf [accessed July 19, 20 16]. 

Prepublication Copy 87 

ED_001449_00000002 



Using 21st Century Science to Improve Risk-Related Evaluations 

IARC (International Agency for Research on Cancer). 2015a. Diazinon in Some Organophosphate Insecticides and 
Herbicides. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 112 [online]. A vail
able: http:/ /monographs.iarc.fr/ENG/Monographs/volll2/mono 112-08.pdf [accessed May 15, 20 16]. 

IARC (International Agency for Research on Cancer). 2015b. Malathion in Some Organophosphate Insecticides and 
Herbicides. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 112 [online]. A vail
able http:/ /monographs.iarc.fr/ENG/Monographs/volll2/mono 112-07 .pdf [accessed May 15, 20 16]. 

ICH (International Conference on Hannonization). 2014. ICH Harmonised Tripartite Guideline: Assessment and 
Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk. 
M7: Current Step 4 Version, June 23, 2014. International Conference on Harmonization of Technical Re
quirements for Registration of Phannaceuticals for Human Use [online]. Available: http:/ /www.ich.org/file 
admin!Public _Web_ Site/ICH _products/Guidelines/Multidisciplinary/M7 /M7 _Step_ 4.pdf [accessed July 22, 
2016]. 

Irons, T.D., R.C. MacPhail, D.L. Hunter, and S. Padilla. 2010. Acute neuroactive drug exposures alter locomotor 
activity in larval zebrafish. Neurotoxicol. Teratol. 32(1) 84-90. 

Jones, L.J., and W.H. Norton. 2015. Using zebrafish to uncover the genetic and neural basis of aggression, a fre
quent comorbid symptom of psychiatric disorders. Behav. Brain Res. 276:171-180. 

Kacew, S., and M.F. Festing. 1996. Role of rat strain in the differential sensitivity to pharmaceutical agents and 
naturally occurring substances. J. Toxicol. Environ. Health 47(1):1-30. 

Karakikes, 1., M. Ameen, V. Tennglinchen, and J.C. Wu. 2015. Human induced pluripotent stem cell-derived cardi
omyocytes: Insights into molecular, cellular, and functional phenotypes. Circ. Res. 117(1):80-88. 

Keiser, M.J., B.L. Roth, B.N. Annbruster, P. Ernsberger, J.J. Irwin, and B.K. Shoichet. 2007. Relating protein 
phannacology by ligand chemistry. Nat. Biotechnol. 25(2):197-206. 

Kettleborough, R.N., E.M. Busch-Nentwich, S.A. Harvey, C.M. Dooley, E. de Bruijn, F. van Eeden, I. Sealy, R.J. 
White, C. Herd, I.J. Nijman, F. Fenyes, S. Mehroke, C. Scahill, R. Gibbons, N. Wali, S. Caruthers, A. Hall, J. 
Yen, E. Cuppen, and D.L. Stemple. 2013. A systematic genome-wide analysis of zebrafish protein-coding 
gene function. Nature 496(7446):494-497. 

Kleinstreuer, N.C., J. Yang, E.L. Berg, T.B. Knudsen, A.M. Richard, M.T. Martin, D.M. Reif, R.S. Judson, M. 
Polokoff, D.J. Dix, R.J. Kavlock, and K.A. Houck. 2014. Phenotypic screening of the ToxCast chemical li
brary to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 32(6):583-591. 

Kokel, D., J. Bryan, C. Laggner, R. White, C.Y. Cheung, R. Mateus, D. Healey, S. Kim, A.A. Werdich, S.J. 
Haggarty, C.A. Macrae, B. Shoichet, and R.T. Peterson. 2010. Rapid behavior-based identification of 
neuroactive small molecules in the zebrafish. Nat. Chern. Biol. 6(3):231-237. 

Kolaja, K. 2014. Stem cells and stem cell-derived tissues and their use in safety assessment. J. Biol. Chern. 
289(8):4555- 4561. 

Krewski, D., M.E. Andersen, E. Mantus, and L. Zeise. 2009. Toxicity testing in the 21st century: Implications for 
human health risk assessment. Risk Anal. 29(4):474-479. 

Krewski, D., M. Westphal, M.E. Andersen, G. Paoli, W. Chiu, M. Al-Zoughool, M.C. Croteau, L. Burgoon, and I. 
Cote. 2014. A framework for the next generation of risk science. Environ Health Perspect.l22(8):796-805. 

Kruhlak, N.L., R.D. Benz, H. Zhou, and T.J. Colatsky. 2012. (Q)SAR modeling and safety assessment in regulatory 
review. Clin. Pharmacol. Ther. 91(3):529-534. 

Lamb, J., E.D. Crawford, D. Peck, J.W. Modell, I.C. Blat, M.J. Wrobel, J. Lerner, J.P. Bnmet, A. Subramanian, 
K.N. Ross, M. Reich, H. Hieronymus, G. Wei, S.A. Armstrong, S.J. Haggerty, P.A. Clemons, R. Wei, S.A. 
Carr, E.S. Lander, and T.R. Golub. 2006. The connectivity map: Using gene-expression signatures to connect 
small molecules, genes, and disease. Science 313(5795):1929-1935. 

Landry, J.P., G. Malovichko, and X.D. Zhu. 2015. High-throughput dose-response measurement using a label-free 
microarray-in-microplate assay platfonn. Anal. Chern. 87(11):5640-5648. 

Lebold, K.M .. , C.V. Lohr, C.L. Barton, G.W. Miller, E.M. Labut, R.L.Tanguay, and M.G. Traberet. 2013. Chronic 
vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and 
impaired swinnning behavior. Comp. Biochem. Phys. C Toxicol. Pharmacol. 157(4):382-389. 

Levin, E.D. Z. Bencan, and D.T. Cerutti. 2007. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 90(1):54-
58. 

Liu, K., K.P. Lehmann, M. Sar, S.S. Young, and K.W.Gaido. 2005. Gene expression profiling following in utero 
exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis. Biol. Reprod. 
73(1):180-192. 

88 Prepublication Copy 

ED_001449_00000002 



Advances in Toxicology 

Liu, J., K. Mansouri, R.S. Judson, M.T. Martin, H. Hong, M. Chen, X. Xu, R.S. Thomas, and I. Shah. 2015. 
Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem. Res. Toxicol. 
28(4):738-751. 

Lounkine, E., M.J. Keiser, S. Whitebread, D. Mikhailov, J. Hamon, J.L. Jenkins, P. Lavan, E.Weber, A.K. Doak, S. 
Cote, B.K. Shoichet, and L. Urban. 2012. Large-scale prediction and testing of drug activity on side-effect 
targets. Nature 486(7403):361-367. 

Lovik, M. 1997. Mutant and transgenic mice in immunotoxicology: An introduction. Toxicologyll9(1):65-76. 
Lovitt, C.J., T.B. Shelper, and V.M. Avery. 2014. Advanced cell culture techniques for cancer discovery. Biology 

3(2):345-367. 
Low, Y., A. Sedykh, D. Fourches, A. Golbraikh, M. Whelan, I. Rusyn, and A.Tropsha .2013. Integrative chemical

biological read-across approach for chemical hazard classification. Chern. Res. Toxicol. 26(8): 1199-208. 
Mahmood, F., S. Fu, J. Cooke, S.W. Wilson, J.D. Cooper, and C. Russell. 2013. A zebrafish model ofCLN2 disease 

is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction 
in proliferation. Brain 136(Pt. 5):1488-1507. 

Malik, N., A.G. Efthymiou, K. Mather, N. Chester, X. Wang, A. Nath, M.S. Rao, and J.P. Steiner. 2014. Com
pounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem 
cells and rat mixed cortical neurons. Neurotoxicology 45:192-200. 

Mann, D.A. 2015. Human induced pluripotent stem cell-derived hepatocytes for toxicology testing. Expert Opin. 
Drug Metab. Toxicol. 11(1):1-5. 

Mann, K.D., E.R. Turnell, J. Atema, and G. Gerlach. 2003. Kin recognition in juvenile zebrafish (Dania reria) based 
on olfactory cues. Biol. Bull. 205(2):224-225. 

Martin-Jimenez, R., M. Campanella, and C. Russell. 2015. New zebrafish models ofneurodegeneration. Curr. Neu
rol. Neurosci. 15(6):33. 

Matthews, E.J., N.L. Kruhlak, R. Daniel Benz, J. Ivanov, G. Klopman, and J.F. Contrera. 2007. A comprehensive 
model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to 
predict activities of untested chemicals. Regul. Toxicol. Pharmacol. 47(2):136-155. 

Mattis, V.B., C. Tom, S. Akimov, J. Saeedian, M.E. 0stergaard, A.L. Southwell, C.N. Doty, L. Ornelas, A. 
Sahabian, L. Lenaeus, B. Mandefro, D. Sareen, J. Atjomand, M.R. Hayden, C.A. Ross, and C.N. Svendesn. 
2015. HD iPSC-derived neural progenitors accmnulate in culture and are susceptible to BDNF withdrawal due 
to glutamate toxicity. Hum. Mol. Genet. 24(11):3257-3271. 

McGinnity, D.F., J. Collington, R.P. Austin, and R.J. Riley. 2007. Evaluation of human phannacokinetics, 
therapeutic dose and exposure predictions using marketed oral drugs. Curr. Drug Metab. 8(5):463-479. 

McKinstry- Wu, A.R., W. Bu, G. Rai, W.A. Lea, B.P. Weiser, D.F. Liang, A. Simeonov, A. Jadhav, D.J. Maloney, 
and R.G. Eckenhoff. 2015. Discovery of a novel general anesthetic chemotype using high-throughput 
screening. Anesthesiology 122(2):325-333. 

Meeker, N.D., and N.S. Trede. 2008. Immunology and zebrafish: Spawning new models of human disease. Dev. 
Comp. Immunol. 32(7):745-757. 

Mehta, J., E. Rouah-Martin, B. Van Dorst, B. Maes, W. Herrebout, M.L. Scippo, F. Dardenne, R. Blust, and J. 
Robbens. 2012. Selection and characterization ofPCB-binding DNA aptamers. Anal. Chern. 84(3):1669-1676. 

Miller, N., and R. Gerlai. 2012. From schooling to shoaling: Patterns of collective motion in zebrafish (Dania reria). 
PLoS One 7(ll):e48865. 

Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Network motifs: Simple building 
blocks of complex networks. Science 298(5594):824-827. 

Moorman, S.J. 2001. Development of sensory systems in zebrafish (Dania reria ). ILAR J. 42( 4):292-298. 
Morgan, A.P., and C.E. Welsh. 2015. Informatics resources for the Collaborative Cross and related mouse 

populations. Mmmn. Genome 26(9-10):521-539. 
NASEM (National Academies of Sciences, Engineering and Medicine). 2015. Application of Modem Toxicology 

Approaches for Predicting Acute Toxicity for Chemical Defense. Washington, DC: The National Academies 
Press. 

NCATS (National Center for Advancing Translational Sciences. 2016. About Tissue Chip. Available: http://ncats. 
nih.gov/tissuechip/about [accessed July 20, 20 16]. 

Ng, H.W., S.W. Doughty, H. Luo, H. Ye, W. Ge, W. Tong, and H. Hong. 2015. Development and validation of de
cision forest model for estrogen receptor binding prediction of chemicals using large data sets. Chem. Res. 
Toxicol. 28(12):2343-2351. 

Prepublication Copy 89 

ED_001449_00000002 



Using 21st Century Science to Improve Risk-Related Evaluations 

Nguyen, A.T., A. Emelyanov, C.H. Koh, J.M. Spitsbergen, S. Parinov, and Z. Gong. 2012. An inducible kras(Vl2) 
transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis. Model Mech. 5(1):63-
72. 

Norton, W.H. 2013. Towards developmental models of psychiatric disorders in zebrafish. Front. Neural Circuits 
7:79. 

NRC (National Research Council). 2000. Scientific Frontiers in Developmental Toxicology and Risk Assessment. 
Washington, DC: National Academy Press. 

NRC (National Research Council). 2006. Assessing the Human Health Risks of Trichloroethylene: Key Scientific 
Issues. Washington, DC: The National Academies Press. 

NRC (National Research Council). 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy. Washing
ton, DC: The National Academies Press. 

NRC (National Research Council). 2008. Phthalates and Cumulative Risk Assessment: The Tasks Ahead. Washing
ton, DC: The National Academies Press. 

OECD (Organisation for Economic Co-operation and Development). 2004. The Report from the Expert Group on 
(Quantitative) Structure- Activity Relationships [QSARs] on the Principles for the Validation of (Q)SARs. 
ENVIJM/MON0(2004)24. OECD Series on Testing and Assessment No. 49. Paris: OECD [online]. Available: 
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdfl?cote=env/jrnlmono(2004)24&doclanguage= 
en [accessed July 20, 2016]. 

Padilla, S., D. Corum, B. Padnos, D.L. Hunter, A. Beam, K.A. Houck, N. Sipes, N. Kleinstreuer, T. Knudsen, D.J. 
Dix, and D.M. Reif. 2012. Zebrafish developmental screening of the ToxCast Phase I chemical library. 
Reprod. Toxicol. 33(2):174-187. 

Panula, P., V. Sallinen, M. Sundvik, J. Kolehmainen, V. Torkko, A. Tiittula, M. Moshnyakov, and P. Podiasz. 2006. 
Modulatory neurotransmitter systems and behavior: Towards zebrafish models ofneurodegenerative diseases. 
Zebrafish 3(2):235-247. 

Panula, P., C.Y. Chen, M. Priyadarshini, H. Kudo, S. Semenova, M. Sundvik, and V. Sallinen. 2010. The 
comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human 
neuropsychiatric diseases. Neurobiol. Dis. 40(1):46-57. 

Papadatos, G., A. Gaulton, A. Hersey, and J.P. Overington. 2015. Activity, assay and target data curation and quality 
in the ChEMBL database. J. Comput. Aided Mol. Des. 29(9):885-896. 

Patlewicz, G., N. Ball, E.D. Booth, E. Hulzebos, E. Zvinavashe, and C. Hennes. 2013. Use of category approaches, 
read-across and (Q)SAR: General considerations. Regular. Toxicol. Pharmacol. 67(1):1-12. 

Pauli, A., E. Valen, M.F. Lin, M. Garber, N.L. Vastenhouw, J.Z. Levin, L. Fan, A. Sandelin, J.L. Rinn, A. Regev, 
and A.F. Schier. 2012. Systematic identification of long noncoding RNAs expressed during zebrafish 
embryogenesis. Genome Res. 22(3):577-591. 

Pfuhler, S., R. Fautz, G. Ouedraogo, A. Latil, J. Kenny, C. Moore, W. Diembeck, N.J. Hewitt, K. Reisinger, and J. 
Barroso. 2014. The Cosmetics Europe strategy for animal-free genotoxicity testing: project status up-date. 
Toxicol. In Vitro 28(1):18-23. 

Pham, N., S. Iyer, E. Hackett, B.H. Lock, M. Sandy, L. Zeise, G. Solomon, and M. Marty. 2016. Using ToxCast to 
explore chemical activities and hazard traits: A case study with ortho-phthalates. Toxicol. Sci. 151(2):286-301. 

Phillips, J.B., and M. Westerfield. 2014. Zebrafish models in translational research: Tipping the scales toward 
advancements in human health. Dis. Model Mech. 7(7):739-743. 

Pickart, M.A., and E.W. Klee. 2014. Zebrafish approaches enhance the translational research tackle box. Transl. 
Res. 163(2):65-78. 

Pohjanvirta, R., M. Viluksela, J.T. Tuomisto, M. Unkila, J. Karasinska, M.A. Franc, M. Holowenko, J.V. Giannone, 
P.A. Harper, J. Tuomisto, and A.B. Okey. 1999. Physicochemical differences in the AH receptors of the most 
TCDD-susceptible and the most TCDD-resistant rat strains. Toxicol. Appl. Pharmacol. 155(1):82-95. 

Preston, M.A., and W.B. Macklin. 2015. Zebrafish as a model to investigate CNS myelination. Glia 63(2):177-193. 
Prozialeck, W.C., P.C. Lamar, and S.M. Lynch. 2003. Cadmium alters the localization ofN-cadherin, E-cadherin, 

and beta-catenin in the proximal tubule epithelium. Toxicol. Appl. Pharmacol. 189(3):180-195. 
Raoux, M., N. Azorin, C. Colomban, S. Rivoire, T. Merrot, P. Delmas, and M. Crest. 2013. Chemicals inducing 

acute irritant contact dermatitis mobilize intracellular calcium in human keratinocytes. Toxicol. In Vitro. 
27(1):402-408. 

Reif, D.M., L. Truong, D. Mandrell, S. Marvel, G. Zhang, and R.L. Tanguay. 2016. High-throughput 
characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch. 
Toxicol. 90(6):1459-1470. 

90 Prepublication Copy 

ED_001449_00000002 



Advances in Toxicology 

Rennekamp, A.J., and R.T. Peterson. 2015. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 
24:58-70. 

Roberts, D.W., A.O. Aptula, and G. Patlewicz. 2007a. Electrophilic chemistry related to skin sensitization. Reaction 
mechanistic applicability domain classification for a published data set of 106 chemicals tested in the mouse 
local lymph node assay. Chem. Res. Toxicol. 20(1):44-60. 

Roberts, D.W., G. Patlewicz, S.D. Dimitrov, L.K. Low, A.O. Aptula, P.S. Kern, G.D. Dimitrova, M.I.H. Comber, 
R.D. Phillips, J. Niemela, C. Madsen, E.B. Wedebye, P.T. Bailey, and O.G. Mekenyan. 2007b. TIMES-SS-A 
mechanistic evaluation of an external validation study using reaction chemistry principles. Chem. Res. Toxi
col. 20(9):1321-1330. 

Romero, A. C., E. Del Rio, E. Vilanova, and M.A. Sogorb. 2015. RNA transcripts for the quantification of differenti
ation allow marked improvements in the performance of embryonic stem cell test (EST). Toxicol. Lett. 
238(3):60-69. 

Rotroff, D.M., D.J. Dix, K.A. Houck, T.B. Knudsen, M.T. Martin, K.W. McLaurin, D.M. Reif, K.M. Crofton, A.V. 
Singh, M. Xia, R. Huang, and R.S. Judson. 2013. Using in vitro high throughput screening assays to identify 
potential endocrine-disrupting chemicals. Environ. Health Perspect. 121(1):7-14. 

Rous, P., and F.S. Jones. 1916. A method for obtaining suspensions of living cells from the fixed tissues, and for the 
plating out of individual cells. J. Exp. Med. 23(4):549-555. 

Schlegel, A., and P. Gut. 2015. Metabolic insights from zebrafish genetics, physiology, and chemical biology. Cell. 
Mol. Life Sci. 72(12):2249-2260. 

Scott, C.W., M.F. Peters, and Y.P. Dragan. 2013. Human induced pluripotent stem cells and their use in drug dis
covery for toxicity testing. Toxicol. Lett. 219(1):49-58. 

Shah, 1., and J. Wambaugh. 2010. Virtual tissues in toxicology. J. Toxicol. Environ. Health B. Crit. Rev. 13(2-
4):314-328. 

Sharma, P., D.M. Ando, A. Daub, J.A. Kaye, and S. Finkbeiner. 2012. High-throughput screening in primary 
neurons. Methods Enzymol. 506:331-360. 

Shirai, T., A. Nakamura, S. Fukushima, A. Yamamoto, M. Tada, and N. Ito. 1990. Different carcinogenic responses 
in a variety of organs, including the prostate, of five different rat strains given 3,2'-dimethyl-4-aminobiphenyl. 
Carcinogenesis 11(5):793-797. 

Silva, M., N. Pham, C. Lewis, S. Iyer, E. Kwok, G. Solomon, and L. Zeise. 2015. A comparison of ToxCast test 
results with In vivo and other In vitro endpoints for neuro, endocrine, and developmental toxicities: A case 
study using endosulfan and methidathion. Birth Defects Res. B Dev. Reprod. Toxicol. 104(2):71-89. 

Simmons, S.O., C.Y. Fan, and R. Ramabhadran. 2009. Cellular stress response pathway system as a sentinel 
ensemble in toxicological screening. Toxicol. Sci. 111(2):202-225. 

Sinnecker, D., K.L. Laugwitz, and A. Moretti. 2014. Induced pluripotent stem cell-derived cardiomyocytes for drug 
development and toxicity testing. Pharmacol. Ther. 143(2):246-252. 

Sipes, N.S., M.T. Martin, P. Kothiya, D.M. Reif, R.S. Judson, A.M. Richard, K.A. Houck, D.J. Dix, R.J. Kavlock, 
and T.B. Knudsen. 2013. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling as
says. Chem. Res. Toxicol. 26(6):878-895. 

Sirenko, 0., J. Hesley, I. Rusyn, and E.F. Cromwell. 2014a. High-content high-throughput assays for characterizing 
the viability and morphology of human iPSC-derived neuronal cultures. Assay Drug Dev. Technol. 12(9-
1 0):536-54 7. 

Sirenko, 0., J. Hesley, I. Rusyn, and E. Cromwell. 2014b. High-content assays for hepatotoxicity using induced plu
ripotent stem cell (iPSC)-derived cells. Assay Drug Dev. Technol. 12(1):43-54.Sjogren, A.K., M. Liljevald, B. 
Glinghammar, J. Sagemark, X.Q. Li, A. Jonebring, I. Cotgreave, G. Brolen, and T.B. Andersson. 2014. Criti
cal differences in toxicity mechanisms in induced pluripotent stem cell-derived hepatocytes, hepatic cell lines 
and primary hepatocytes. Arch. Toxicol. 88(7): 1427-37. 

Sledge, D., J. Yen, T. Morton, L. Dishaw, A. Petro, S. Donerly, E. Linney, and E.D. Levin. 2011. Critical duration 
of exposure for developmental chlorpyrifos-induced neurobehavioral toxicity. Neurotoxicol. Teratol. 
33(6):742-751. 

Smith, A.J., M.K. Hancock, K. Bi, J. Andrews, P. Harrison, and T.J. Vaughan. 2012. Feasibility of implementing 
cell-based pathway reporter assays in early high-throughput screening assay cascades for antibody drug dis
covery. J. Biomol. Screen. 17(6):713-726. 

Smith, M.T., K.Z. Guyton, C.F. Gibbons, J.M. Fritz, C.J. Portier, I. Rusyn, D.M. DeMarini, J.C. Caldwell, R.J. 
Kavlock, P. Lambert, S.S. Hecht, J.R. Bucher, B.W. Siwart, R. Baan, V.J. Cogliano, and K. Straif. 2016. Key 
characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health 
Perspect. 124(6):713-721. 

Prepublication Copy 91 

ED_001449_00000002 



Using 21st Century Science to Improve Risk-Related Evaluations 

Soldatow, V.Y., E.L. Lecluyse, L.G. Griffith, and I. Rusyn. 2013. In vitro models for liver toxicity testing. Toxicol. 
Res. (Camb). 2(1):23-39. 

Song, Y., V. Madahar, and J. Liao. 2011. Development of FRET assay into quantitative and high-throughput screen
ing technology platforms for protein-protein interactions. Ann. Biomed. Eng. 39( 4): 1224-1234. 

Spence, R., and C. Smith. 2005. Male territoriality mediates density and sex ratio effects on oviposition in the 
zebrafish. Anim. Behav. 69(6):1317-1323. 

Steenbergen, P. J., M.K. Richardson, and D.L. Champagne. 2011. The use of the zebrafish model in stress research. 
Prog. Neuropsychopharmacol. Biol. Psychiatry 35(6):1432-1451. 

Sung, J.H., and M.L. Shuler. 2010. In vitro microscale systems for systematic drug toxicity study. Bioprocess Bio
syst. Eng. 33(1):5-19. 

Swat, M., and J.A. Glazier. 2013. Agent-based virtual-tissue simulations. Biomed. Comput. Rev. (Fall):28-29. 
Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. lchisaka, K. Tomoda, and S. Yamanaka. 2007. Induction of 

pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5):861-872. 
Theunissen, P.T., J.F. Robinson, J.L. Pennings, M.H. van Herwijnen, J.C. Kleinjans, and A.H. Piersma. 2012. Com

pound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural em
bryonic stem cell test (ESTn). Toxicol. Appl. Pharmacol. 262(3):330-340. 

Thon, J.N., M.T. Devine, A. Jurak Bgeonja, J. Tibbitts, and J.E. Italiano Jr. 2012. High-content live-cell imaging 
assay used to establish mechanism of trastuzumab emtansine (T-DMl) - mediated inhibition of platelet 
production. Blood 120(10):1975-1984. 

Threadgill, D.W., and G.A. Churchill. 2012. Ten years of the Collaborative Cross. Genetics 190(2):291-294. 
Tonk, E.C., J.F. Robinson, A. Verhoef, P.T. Theunissen, J.L. Pennings, and A.H. Piersma. 2013. Valproic acid

induced gene expression responses in rat whole embryo culture and comparison across in vitro developmental 
and non-developmental models. Reprod. Toxicol. 41:57-66. 

Tropepe, V., and H.L. Sive. 2003. Can zebrafish be used as a model to study the neurodevelopmental causes of 
autism? Genes Brain. Behav. 2(5):268-281. 

Truong, L., K.S. Saili, J.M. Miller, J.E. Hutchison, and R.L. Tanguay. 2012. Persistent adult zebrafish behavioral 
deficits results from acute embryonic exposure to gold nanoparticles. Comp. Biochem. Physiol. C Toxicol. 
Pharmacol. 155(2):269-274. 

Truong, L., D.M. Reif, L. StMary, M.C. Geier, H.D. Truong, and R.L. Tanguay. 2014. Multidimensional in vivo 
hazard assessment using zebrafish. Toxicol. Sci. 137(1):212-233. 

Tse, A.C., K.Y. Lau, W. Ge, and R.S. Wu. 2013. A rapid screening test for endocrine disrupting chemicals using 
primary cell culture ofthe marine medaka. Aquat. Toxicol. 144-145:50-58. 

Tyson, J.J., and B. Novak. 2010. Functional motifs in biochemical reaction networks. Annu. Rev. Phys. Chem. 
61:219-240. 

Valdivia, P., M. Martin, W.R. LeFew, J. Ross, K.A. Houck, and T.J. Shafer. 2014. Multi-well microelectrode array 
recordings detect neuroactivity of ToxCast compounds. Neurotoxicology 44:204-217. 

Valerio, L.G., K.B. Arvidson, R.F. Chanderbhan, and J.F. Contrera. 2007. Prediction of rodent carcinogenic 
potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive 
modeling. Toxicol. Appl. Pharmacol. 222(1):1-16. 

Van Vliet, E. 2011. Current standing and future prospects for the technologies proposed to transform toxicity testing 
in the 21st century. ALTEX 28(1):17-44. 

Varani, J., P. Perone, D.M. Spahlinger, L.M. Singer, K.L. Diegel, W.F. Bobrowski, and R. Dunstan. 2007. Hmnan 
skin in organ culture and human skin cells (keratinocytes and fibroblasts) in monolayer culture for assessment 
of chemically induced skin damage. Toxicol. Pathol. 35(5):693-701. 

Walcott, B.P., and R.T. Peterson. 2014. Zebrafish models of cerebrovascular disease. J. Cereb. Blood Flow Metab. 
34(4):571-577. 

Wambaugh, J., and I. Shah. 2010. Simulating microdosimetry in a virtual hepatic lobule. PLoS Comput. Biol. 
6( 4):e 1000756. 

Wang, J.D., N.J. Douville, S. Takayama, and M. El Sayed. 2012. Quantitative analysis of molecular absorption into 
PDMS microfluidic channels. Ann. Biomed. Eng. 40(9):1862-1873. 

Wheeler, H.E., C. Wing, S.M. Delaney, M. Komatsu, and M.E. Dolan. 2015. Modeling chemotherapeutic neurotoxi
city with human induced pluripotent stem cell-derived neuronal cells. PLoS One 10(2):e0118020. 

Wilcox, K.C., M.R. Marunde, A. Das, P.T. Velasco, B.D. Kuhns, M.T. Marty, H. Jiang, C.H. Luan, S.G. Sligar, and 
W.L. Klein. 2015. Nanoscale synaptic membrane mimetic allows unbiased high throughput screen that targets 
binding sites for Alzheimer's-associated A~ oligomers. PLoS One 10(4):e0125263. 

92 Prepublication Copy 

ED_001449_00000002 



Advances in Toxicology 

Williams, K.E., G.A. Lemieux, M.E. Hassis, A.B. Olshen, S.J. Fisher, and Z. Werb. 2016. Quantitative proteomic 
analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals. Proc. 
Natl. Acad. Sci. U.S.A. 113(10):E1343-E1351. 

Wills, L.P., G.C. Beeson, D.B. Hoover, R.G. Schnellmann, and C.C. Beeson. 2015. Assessment ofToxCast Phase II 
for mitochondrial liabilities using a high-throughput-respirometric assay. Toxicol Sci. 146(2):226-234. 

Wu, S., J. Fisher, J. Naciff, M. Laufersweiler, C. Lester, G. Daston, and K. Blackburn. 2013. Framework for identi
fying chemicals with structural features associated with the potential act as developmental or reproductive tox
icants. Chem. Res. Toxicol. 26(12):1840-1861. 

Xia, W., Y.J. Wan, X. Wang, Y.Y. Li, W.J. Yang, C.X. Wang, and S.Q. Xu. 2011. Sensitive bioassay for detection 
ofPPARa potentially hazardous ligands with gold nanoparticle probe. J. Hazard Mater. 192(3): 1148-1154. 

Xu, J.J., P.V. Henstock, M.C. Dunn, A.R. Smith, J.R. Chabot, and D. de Graaf. 2008. Cellular imaging predictions 
of clinical drug-induced liver injury. Toxicol. Sci. 105(1):97-105. 

Yamasaki, K., S. Kawasaki, R.D. Young, H. Fukuoka, H. Tanioka, M. Nakatsukasa, A.J. Quantock, and S. 
Kinoshita. 2007. Genomic aberrations and cellular heterogeneity in SV40-immortalized human corneal 
epithelial cells. Invest. Ophthalmol. Vis. Sci. 50(2):604-613. 

Yoo, H.S., B.U. Bradford, 0. Kosyk, S. Shymonyak, T. Uehara, L.B. Collins, W.M. Bodnar, L.M. Ball, A. Gold, 
and I. Rusyn. 2015a. Comparative analysis of the relationship between trichloroethylene metabolism and 
tissue-specific toxicity among inbred mouse strains: liver effects. J. Toxicol. Environ. Health A. 78(1):15-31. 

Yoo, H.S., B.U. Bradford, 0. Kosyk, T. Uehara, S. Shymonyak, L.B. Collins, W.M. Bodnar, L.M. Ball, A. Gold, 
and I. Rusyn. 2015b. Comparative analysis of the relationship between trichloroethylene metabolism and 
tissue-specific toxicity among inbred mouse strains: Kidney effects. J. Toxicol. Environ. Health A. 78(1):32-
49. 

Zhang, Q., S. Bhattacharya, M.E. Andersen, and R.B. Conolly. 2010. Computational systems biology and dose
response modeling in relation to new directions in toxicity testing. J. Toxicol. Environ. Health B Crit. Rev. 
13(2-4):253-276. 

Zhang, X., S. Wiseman, H. Yu, H. Liu, J.P. Giesy, and M. Hecker. 2011. Assessing the toxicity of napthenic acids 
using a microbial genome wide live cell reporter array system. Environ. Sci. Technol. 45(5):1984-1991. 

Zhang, Z., N. Guan, T. Li, D.E. Mais, and M. Wang. 2012a. Quality control of cell-based high-throughput drug 
screening. Acta. Phanna. Sin. B 2(5):429-438. 

Zhang, W., R. Korstanje, J. Thaisz, F. Staedtler, N. Harttman, L. Xu, M. Feng, L. Yanas, H. Yang, W. Valdar, G. A. 
Churchill, and K. Dipetrillo. 2012b. Genome-wide association mapping of quantitative traits in outbred mice. 
G3 (Bethesda) 2(2):167-174. 

Zhang, Q., S. Bhattacharya, R.B. Conolly, H.J. Clewell, N.E. Kaminski, and M.E. Andersen. 2014. Molecular 
signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ. Health 
Perspect. 122(12): 1261-1270. 

Zhang, Q., S. Bhattacharya, J. Pi., R.A. Clewell, P.L. Carmichael, and M.E. Andersen. 2015. Adaptive 
posttranslational control in cellular stress response pathways and its relationship to toxicity testing and safety 
assessment. Toxicol. Sci. 147(2):302-316. 

Zou, F., J.A. Gelfond, D.C. Airey, L. Lu, K.F. Manly, R.W. Williams, and D.W. Threadgill. 2005. Quantitative trait 
locus analysis using recombinant inbred intercrosses: Theoretical and empirical considerations. Genetics 
170(3): 1299-1311. 

Zuang, V., J. Barroso, S. Bremer, S. Casati, M. Ceridono, S. Coecke, R. Corvi, C.Eskes, A. Kinsner, C. Pellizzer, P. 
Prieto, A. Worth, and J. Kreysa. 2010. ECVAM Technical Report on the Status of Alternative Methods for 
Cosmetics Testing (2008-2009). Luxembourg: Publications Office of the European Union [online]. Available: 
https:/ /eurl-ecvam.jrc.ec.europa.eu/eurl-ecvam-status-reports/files/ecvam-report-2008-2009 [accessed July 19, 
2016]. 

Prepublication Copy 93 

ED_001449_00000002 



4 

Advances in Epidemiology 

Epidemiology is the study of health and disease in populations. Standard definitions of epidemiolo
gy emphasize a descriptive component that captures patterns of disease by person, place, and time and an 
etiological component that identifies causes of disease (Gordis 2013). The descriptive element of epide
miology comprises tracking of health and disease indicators and population risk factors (surveillance). 
The etiological activities-searching for the causes and determinants of disease-involve primarily case
control and cohort studies. The span of epidemiological research also includes intervention studies, both 
randomized and nonrandomized in the assignment of preventive measures, such as vaccinations, or other 
interventions. 

This chapter addresses the evolving approaches used by epidemiologists to investigate the associa
tions between environmental factors and human disease and the role of epidemiology in the context of the 
committee's charge regarding 21st century science related to risk-based decision-making. It does not give 
an overall introduction to the science of epidemiology; such material is readily available in textbooks and 
elsewhere. It briefly discusses, however, the role of epidemiology in risk assessment, the evolution of ep
idemiology, data opportunities now available, and types of biases to consider given the use ofTox21 and 
ES21 tools and methods. The chapter then focuses on the use of -omics technologies in epidemiology and 
concludes with some challenges and recommendations. 

RISK ASSESSMENT AND EPIDEMIOLOGY 

The role of epidemiological evidence has long been established within the risk-assessment paradigm 
originally described in the report Risk Assessment in the Federal Government: Managing the Process 
(NRC 1983) and in various later reports (Samet et al. 1998). Identification of risk factors for disease and 
inference of causal associations from epidemiological studies provide important information for the haz
ard-identification component. Evidence on hazard obtained from epidemiological studies is given prece
dence in evidence-evaluation guidelines, including those of the US Environmental Protection Agency and 
the International Agency for Research on Cancer (IARC). Convincing epidemiological evidence that in
dicates a hazard is considered sufficient to establish causation, for example, in the IARC carcinogen clas
sification scheme. However, human data are available on only a relatively small number of agents, partic
ularly in comparison with the large number of environmental agents to which people are potentially 
exposed. In the absence of natural experiments, observational epidemiological studies are the only scien
tific approach available and ethically acceptable for studying possible effects of potentially harmful 
agents directly in human populations. 

In addition to providing evidence for hazard identification, epidemiological studies can provide un
derstanding of the exposure-response relationship. For some agents, the effects of exposure have been 
investigated primarily in particular groups of workers, such as asbestos workers, at exposure magnitudes 
typically much higher than those of the general population, and exposure-response relationships are ex
trapolated downward, introducing uncertainty. If the needed exposure data on a general population are 
available, epidemiological studies can provide key information on risk at exposure concentrations rele
vant to the population at large. For example, air-pollution exposures of participants in large cohort stud
ies, including the American Cancer Society's Cancer Prevention Study 2 and the multiple studies in
volved in the European Study of Cohorts for Air Pollution Effects (ESCAPE 20 14), have been estimated. 
Although some exposure misclassification is inherent in the case of most environmental and occupational 
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exposures, there are numerous examples of successful incorporation of epidemiologically based expo
sure-response relationships into risk assessments: ionizing radiation and cancer, particulate-matter air 
pollution and mortality, arsenic exposure and cancer, and childhood lead exposure and neuropsychologi
cal development. Methods of addressing or correcting for measurement error have been developed; such 
corrections generally lead to exposure-response curves with steeper slopes (Hart et al. 2015). 

Epidemiological studies can also contribute to understanding the exposure-response relationship by 
identifying determinants of susceptibility if information on characteristics of study participants (such as 
their age, sex, and now genomes) is available. Data collected for epidemiological research or for popula
tion surveillance can be useful for describing exposure distributions on the basis of questionnaires, moni
toring, models, and analyses of biological specimens. 

Epidemiological research might also provide information on overall population risk that fits into the 
risk-characterization component of risk assessment. The population attributable risk statistic, originally 
developed to estimate the burden oflung cancer caused by smoking, provides an estimate of the burden of 
disease resulting from a causal factor (Levin 1953). Thus, data on human populations can contribute to all 
four components of the risk-assessment paradigm described in Chapter 1. 

EPIDEMIOLOGY IN THE 21st CENTURY 

The Evolution of Epidemiology 

The methods of epidemiological research have not been static. Initially, epidemiological research on 
the etiology of noncommunicable diseases-primarily cancer, cardiovascular diseases, pulmonary diseas
es, and metabolic diseases-focused on particular risk factors; exposure assessment was accomplished 
largely by using self-report questionnaires, measurement and estimation methods in the case of occupa
tional studies, and relatively crude indicators in the case of environmental exposures. Some studies incor
porated measurements from biological samples, such as lead or cadmium concentrations, and some esti
mated exposures with models that used extensive data. For example, in the study of survivors of the 
Hiroshima and Nagasaki atomic bombings, radiation dose was estimated with an elaborate algorithm that 
incorporated such information as location and body position at the time of the blast. Epidemiological 
studies of noncommunicable disease, carried out beginning in the 1950s, focused on risk factors at the 
individual level; some later studies began to incorporate risk determinants at higher levels of social or 
organizational structure, including the family, the places of residence and work, and the state and country. 
Efforts were made to build the studies around conceptual frameworks that reflected understanding of 
structural, sociological, and cultural factors driving health status and disease risk, and recent decades have 
seen increasing emphasis on life-course approaches that acknowledge the importance of early life expo
sures, even in utero and trans generational, for disease risk. Furthermore, many later studies of the envi
ronment and health have been designed to reflect the variation in environmental exposures among and 
within communities. 

Most recently, epidemiological research has been greatly affected by advances in other fields. The 
start of the 21st century was characterized by rapid advances in technology, medical sciences, biology, 
and genetics pertinent to epidemiology (Hiatt et al. 2013). Enhanced computing and data-storage capacity 
have been critical. The advent of genomics and genome-wide association studies (GWASs), for example, 
has played an important role in promoting the transformation of the practice of epidemiology. 

The need to achieve samples large enough to provide studies that have adequate statistical power 
and the need to replicate novel findings in independent study populations facilitated the evolution of large 
epidemiological research teams, multicenter studies and consortia, meta-analytical tool development, and 
data-sharing etiquette. Recent decades have seen an evolution from single investigative teams that have 
proprietary control of individual datasets and specimens to the establishment of research consortia that 
have adopted a team-based science and a reproducibility culture through greater sharing of data, proto
cols, and analytical approaches (Guttmacher et al. 2009; Tenopir et al. 2011). Indeed, some funding agen
cies have sought to catalyze the transformation further by supporting the development and dissemination 
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of validated state-of-the-science protocols designed to ascertain a broad array of phenotypic measures so 
that individual research teams (when designing new studies) might be positioned better to share and har
monize data among multiple studies (PhenX Toolkit NHGRI). 

Case-control and cohort studies-the traditional workhorses of epidemiology-will continue to 
make strong contributions. Case-control studies, in particular, will continue to contribute to timely in
depth examination of people that have specific rare outcomes, such as rare cancers or reproductive out
comes, including specific birth defects. Cohort studies will continue to play an important role in aiding in 
the delineation of early antecedents of disease and the identification of preclinical biomarkers and risk 
factors and contribute to the foundation for translational research and precision medicine. Cohort studies, 
if started early enough, can be informative on the importance of early life exposures and their influence 
throughout the life course. The committee anticipates an increasing number of cohort studies that inte
grate treatment and health-outcome information from multiple sources, including information from 
health-care delivery systems. Studies that incorporate analysis of samples from companion biobanks will 
become key resources for connecting mechanisms identified in -omics and other assessments to patho
genesis in humans. Availability of more extensive geographical location information would allow incor
poration of new and emerging data streams that document physical and social environments of popula
tions on small scales into existing and new studies. 

In summary, the factors reshaping the field of epidemiology in the 21st century include expansion of 
the interdisciplinary nature of the discipline; the increasing complexity of scientific inquiry that involves 
multilevel analyses and consideration of disease etiology and progression throughout the life course; 
emergence of new sources and technologies for data generation, such as new medical and environmental 
data sources and -omics technologies; advances in exposure characterization; and increasing demands to 
integrate new knowledge from basic, clinical, and population sciences (Lam et al. 2013). There is also a 
movement to register past and present datasets so that on particular issues data can be identified and com
bined. There are already models for data aggregation across studies (for example, National Cancer Insti
tute Cohort Consortium and Agricultural Health cohorts), and researchers recognize the need for harmo
nizing data collection to facilitate future dataset aggregation (PhenX Toolkit NHGRI; Fortier et al. 2010). 
They are also considering how to create global biobanks (Harris et al. 2012). 

New Data Opportunities 

Epidemiology has always been a discipline that uses large quantities of information with the goal of 
identifying risk factors that can be targeted in individuals or populations ultimately to reduce disease 
morbidity and mortality. Today, modern technologies-including genomic, proteomic, metabolomic, 
epigenomic, and transcriptomic platforms and sophisticated sensor and modeling techniques-facilitate 
the generation and collection of new types of data. The data can be used to generate hypotheses, but they 
can also be used to supplement data from legacy studies to strengthen their findings (see Box 4-1 ). New 
data opportunities have arisen from changes in how medicine is practiced, how health care is delivered, 
and how systems store and monitor health-care data (AACR 2015). Biobanks are being constructed by a 
variety of institutions that provide clinical care and potentially constitute new data sources. 1 They typical
ly include collections of biological specimens (blood, urine, and surgical and biopsy specimens), clinical 
patient information that provides demographic and lifestyle information, perhaps a questionnaire on life
style and environmental and occupational exposures, and ascertainment of health outcomes from clinical 
records. Thus, human data and biosamples potentially available for application of various -omics and 

1The committee notes that biobanks are not a new creation. For example, the National Health and Nutrition Ex
amination Survey, which is conducted for surveillance purposes, collects and analyzes specimens, and the data gen
erated have proved invaluable for exposure assessment. Many other population-based biobanks have been created, 
usually by enrolling healthy subjects; the largest ones include the European Prospective Investigation into Cancer 
and Nutrition (IARC 2016) and the UK Biobank (2016). 
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BOX 4-1 Using Legacy Studies 

"Legacy" studies have accumulated substantial information on various environmental exposures, 
such as tobacco use, occupational exposures, and air pollution; personal factors, including genetic 
data; and disease events that have occurred over decades of follow-up. Some include biological
specimen banks and measures of disease phenotype and intermediate outcomes that were obtained 
by imaging, physiological testing, and other assessment methods. Some studies have already been 
used for application of -omics technologies (EXPoSOMICS 2016). Various cohorts have been used to 
address the association of ambient air pollution with disease incidence and mortality by adding esti
mates of air pollution at residence locations that were generated by new exposure models that have 
sufficient spatial resolution. Combining data from multiple studies provides an opportunity to gain sta
tistical power and make results more precise while increasing the variety of exposures and the hetero
geneity of study participants. 

other technologies might come from opportunistic studies that rely on data sources that might have been 
collected and stored for nonresearch purposes. However, evidence from studies that use human tissue and 
medical data gained through convenience sampling from special populations might not be readily general
ized. Furthermore, such studies carry the same potential for bias as other nonexperimental research data, 
but there is no opportunity with these studies to address some biases via a well-thought out study design, 
data collection, and protocols for obtaining biospecimens. Thus, new data streams and technologies, 
although promising, raise important methodological concerns and challenges and are driving the need to 
develop new study designs and analytical methods to account for technology-specific peculiarities 
(Khoury et al. 20 13). Investigators have cautioned about the increasing possibility of false leads and dead 
ends with each new assay and have called for careful evaluation of analytical performance, reproducibil
ity, concept validity, and ethical and legal implications (Alsheikh-Ali et al. 2011; Khoury et al. 2013). 

The tsunami of data spanning the spectrum of genomic, molecular, clinical, epidemiological, envi
ronmental, and digital information is already a reality of 21st century epidemiology (Khoury et al. 20 13). 
There are challenges in using current methods to process, analyze, and interpret the data systematically 
and efficiently or to find relevant signals in potential oceans of noise. To address those issues, the US 
government in 2012 announced the "Big Data" Initiative and committed funds to support research in data 
science in multiple agencies (Mervis 2012). Epidemiologists are poised to play a central role in shaping 
the directions and investment in building infrastructures for the storage and robust analysis of massive 
and complex datasets. Given experience with multidisciplinary teams, epidemiologists are also equipped 
to direct the interpretation of the data in collaboration with experts in clinical and basic health sciences, 
biomedical informatics, computational biology, mathematics and biostatistics, and exposure sciences. Ad
aptation of technological advances, such as cloud computing, and strategic formation of new academic
industry partnerships to facilitate the integration of state-of-the-art computing into biomedical research 
and health care (Pechette 2012) are only some of the initial challenges that must be confronted before new 
data opportunities can be properly and effectively integrated into future epidemiological studies. 

Types of Biases and Challenges Related to External Validity 

As noted, contemporary epidemiology is faced with an unprecedented proliferation of clinical and 
health-care administrative data, -omics data, and social and environmental data. The biases that generally 
affect epidemiological evidence can be grouped into three broad categories: information bias that arises 
from error in measurements of exposure or outcome variables and co-variates, selection bias that arises 
from the ways in which participants are chosen to take part in epidemiological studies, and confounding 
that arises from the mingled effects of exposures of interest and other exposures. External validity refers 
to the generalizability of findings and is a key consideration in risk assessment. Understanding the selec
tion processes, measurement accuracy, and interpretation of analyses is critical for using epidemiological 
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data in risk assessment, including the new and perhaps large cohorts that will be created from health-care 
databases and combined with exposure estimates. 

The multiplicity, diversity, and size of data sources have generated widespread enthusiasm in re
searchers about the new possibilities (Roger et al. 2015a,b). There will, however, be some challenges in 
using the data. For example, reliance on electronic medical records as a sole basis for assembling cohorts 
might accentuate sample-selection biases because of health-care-seeking behaviors of patients; promote 
misclassification or incomplete documentation of phenotypes, clinical diagnoses, and procedures because 
of vagaries in clinical coding incentives and practices; and lead to confounding because key factors need
ed to evaluate confounding are not routinely collected in medical records, particularly those associated 
with environmental exposures. Although electronic record systems might support the generation of large 
cohorts for investigations, having a large sample size does not mitigate the potential for biases, and it in
creases the likelihood of statistically significant false-positive findings. Furthermore, electronic medical 
records typically contain little information on occupational and environmental exposures, linkage to ex
posure databases might be problematic, and information on important potential confounders, such as to
bacco use, might be sparse and not collected in the standardized fashion needed for research. 

In evaluating risks posed by environmental agents, epidemiologists and exposure scientists typically 
work together to enhance exposure estimates used in epidemiological studies by broadening the variety of 
exposures considered, increasing precision of exposure measures, and providing insights into errors that 
inevitably affect exposure estimates. The full array of advances in exposure science that are described in 
the ES21 report (NRC 2012) and in Chapter 2 of the present report have application in epidemiological 
studies. When exposure methods are appropriately incorporated into the study design, they facilitate ex
ploration of measurement error in exposure variables and covariates. Such error has long been considered 
a serious limitation of epidemiological evidence in risk-assessment contexts; nonrandom errors can bias 
apparent effects upward or downward, and random error generally obscures associations and dose
response relationships. Measurement-error corrections can be made by using data from validation studies 
and statistical models that have been developed over the last 2 decades and applied, for example, to stud
ies on diet and disease risk, radiation and cancer, and air pollution and health (Li et al. 2006; Freedman et 
al. 2015; Hart et al. 2015). 

EPIDEMIOLOGY AND -OMICS DATA 

Historically, epidemiological research has incorporated emerging technologies into new and current 
studies. The need to incorporate new science, however, accelerated several decades ago with the introduc
tion of the paradigm of molecular epidemiology. The new paradigm emerged as a replacement of "black 
box" epidemiology, an approach that examined associations of risk factors with disease while not ad
dressing the intervening mechanisms. The molecular-epidemiology paradigm opens the black boxes 
through the incorporation of biomarkers of exposure, susceptibility, and disease. It stresses the importance 
of pathways and their perturbation, which is highly relevant to the opportunities provided by 21st century 
science and specifically -omics technologies. The approach also strengthens the evidence base for one of 
Bradford Hill's guidelines for causality: understanding of biological plausibility (see Chapter 7). For ex
ample, carcinogenesis is thought to be a multifactorial process in which mutations and selective microen
vironments play critical roles, and key steps of the process can be explored with biomarkers. The molecu
lar-epidemiology paradigm is a general one and conceptually accommodates emerging methods for 
generating biomarker data. 

As indicated, molecular-epidemiology research is focused on underlying biology (exposure and dis
ease pathogenesis) rather than on empirical observation. Thus, as -omics technologies have emerged, they 
have been integrated into current studies and have affected study design, particularly specimen collection 
and management. The incorporation of -omics approaches dates back about 2 decades, beginning with the 
genomic revolution. In some of the current cohort studies, blood samples that had been appropriately 
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stored were analyzed for single-nucleotide polymorphisms (SNPs) and other markers to search for genes 
associated with disease risk, including those modifying risk associated with environmental agents. 

The utility of bringing -omics technologies into epidemiological research is already clear as exem
plified by many studies that have incorporated genomics. One well-known starting point for exploring the 
genetic basis of disease has been GW AS (see discussion below), which involves the comparison of ge
nomic markers in people who have and people who do not have a disease or condition of interest. The list 
of -omics approaches applied in epidemiological research has now expanded beyond genomics to include 
epigenomics, proteomics, transcriptomics, and metabolomics (see Box 1-1). Table 4-1 lists advantages 
and disadvantages of their use. Examples of their use in a specific context are provided in Appendix B, 
which describes the meaning and limitations of -omic approaches in the context of epidemiological re
search on air pollution. Although the new methods have the potential to bring new insights from epidemi
ological research, there are many challenges in applying them. Some new studies are being designed with 
the intent of prospectively storing samples that can be used for existing and future -omics technologies, 
for example, in the case of the EU-funded projects Helix and EXPOsOMICS described in Chapter 1. Ob
taining data from human population studies that are parallel to data that can be obtained from in vitro and 
in vivo toxicity assessments is already possible and offers the possibility of harmonizing comparisons of 
exposure and dose. 

In principle, the -omics approaches now support nontargeted explorations of genes with genomics, 
mRNA with transcriptomics, proteins with proteomics, and metabolites with metabolomics. With the ex
ception of genomics, the measurements usually reflect changes within cells at one or a few points in time 
only, and the tissues that are used in humans are primarily surrogates, such as blood, urine, and saliva. 
Combining different -omics tools, however, increases the possibility for a better understanding of how 
different external exposures interact with internal molecules, for example, by inducing mutations (ge
nomics), causing epigenetic changes (epigenomics), or modifying the internal cell environment in more 
complex ways. The latter changes might be monitored with proteomics, transcriptomics, or metabolomics. 

Meet-in-the-Middle Approach 

One informative strategy for the integration of -omics technologies into epidemiological research is 
the meet-in-the-middle approach (Vineis et al. 2013). The approach provides insights into biological plau
sibility that can bolster causal inference. In the context of a population study, the approach generally in
volves a prospective search for intermediate biomarkers that are linked to the underlying disease and are 
increased in those who eventually develop disease, and a retrospective search that links the intermediate 
biomarkers to past exposures of the environmental agent of concern. As illustrated in Figure 4-1, the ap
proach can be considered as three steps: an investigation into the association between exposure and dis
ease, an assessment of the relationship between exposure and biomarkers of exposure and early effects, 
and an assessment of the relationship between the disease outcome and intermediate biomarkers. Infer
ence of a causal relationship between exposure and disease is strengthened if associations are documented 
for each of the three key relationships in Figure 4-1, corresponding to A, B, and C. 

A recent study of epigenetics and lung cancer (Fasanelli et al. 2015) is illustrative. The biomarkers 
are methylation status of the AHRR gene and the F2RL gene, which are hypomethylated in smokers (ex
posure in Figure 4-lB) (Guida et al. 2015; Vineis et al. 2013). Hypomethylation of the genes is also asso
ciated with lung cancer (disease in Figure 4-1 C). The question is, Are those biomarkers on the causal 
pathway for lung cancer caused by smoking? Fasanelli et al. (2015) showed by using the statistical tech
nique of mediation analysis that 37% of lung cancers could be explained by the methylation status of the 
two genes. Thus, the two genes are biomarkers that are likely to be on the causal pathway and illustrate 
the "meeting in the middle" of the exposure and the disease, the middle being the biomarker. The com
mittee notes, however, that fully assessing causality requires additional steps beyond statistical analysis. 
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TABLE 4-1 Advantages and Limitations of -Omics Technologies 

Advantages 

Limitations 

Use in large, hypothesis-free investigations of the whole complement of relevant biological 
molecules 

Better understanding of phenotype-genotype relations 

Might provide insights into the effects of interactions between environmental conditions and 
genotypes and mechanistic insights into disease aetiology 

There are limitations arising from cost of assays, quality of biological material available (such as 
instability ofRNAs), and the amount oflabor needed. 

Techniques that are still in their discovery state and new leads need to be carefully investigated 
and compared with existing biological information from in vivo and in vitro tests. 

New leads in the discovery of novel intermediate markers need to be confirmed in other 
independent studies preferably with different platforms. 

Moving from promising techniques to successful application of biomarkers in occupational and 
environmental medicine requires not only standardizing and validating techniques, but also 
appropriate study designs and sophisticated statistical analyses for interpreting study results 
especially for untargeted approaches (the issue of multiple comparisons and false positives). 

Source: Adapted from Vineis et al. (2009). 
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FIGURE 4-1 The meet-in-the-middle approach centers on investigating (A) the association between exposure and 
disease, (B) the relationship between exposure and biomarkers of exposure or effect, and (C) the relationship be
tween disease and biomarkers of exposure or effect. 

Exposome-Wide Association Studies 

As defined in Chapter 1, exposome refers to the totality of exposures from conception to death. 
Some have questioned whether the exposome as defined defies practical measurement and is therefore not 
amenable to scientific methods (Miller and Jones 2014). In an attempt to define the exposome as a meas
urable entity, Rappaport and Smith (2010) proposed to consider first the body's internal chemical envi
ronment and how the body responds to these chemical exposures.2 They referred to the exposures as the 

2The inclusion of biological response in the concept helps to expand beyond external chemical exposures to many 
types of exposures-including psychological or physical stress, infections, and gut flora-that produce endogenous 
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internal exposome and distinguished it from the external exposome-exposures external to the body-and 
suggested that the internal and external exposomes are complementary. For example, internal assessment 
might identify environmental health associations (that is, generate new hypotheses on disease etiology), 
but external exposure assessments are needed to identify sources, consider exposure routes, and address 
spatial and temporal variability of exposures (Turner et al. in press). Consequently, an external-exposome 
assessment can take place after hypotheses have been generated, and the environmental sources of inter
nal changes can be sought. The two study designs-one that looks for internal changes starting from ex
ternal measurements (external-exposome assessment) and one that looks for external sources on the basis 
of internal signals (internal-exposome assessment)-are complementary and have been defined as "bot
tom-up" and "top-down" approaches, respectively. 

The -omics tools that can be used to capture the internal exposome make nontargeted analyses that 
parallel GW ASs in concept and approach possible. Studies of that design have been referred to as expo
some-wide association studies (EW ASs).3 Specifically, the EW AS approach involves the investigation of 
associations of a large number of small molecules, proteins, or lipids with disease or intermediate pheno
types to identify biomarkers of exposure or disease. One general EW AS approach to generate new hy
potheses on disease causation has been described by Rappaport and Smith (2010). Figure 4-2 shows a 
study design that can lead to the generation of new hypotheses about chemical hazards in the context of a 
case-control study. Targeted and nontargeted metabolomics approaches are used to compare exposures of 
cases that have a specific disease with exposures of ones that do not (controls). After the initial discovery 
phase, the experimental design can be improved by a testing (replication) phase with a prospective con
text (a case-control study that is nested in a prospective cohort). That approach takes temporality into ac
count by using biological samples collected before disease manifestation to avoid or to reduce the poten
tial for reverse causation. Unidentified features that are significantly associated with the outcomes of 
interest would next be chemically identified by using methods described in Chapter 2, for example, by 
using NMR, IMS-MS/MS, or cheminformatics or by synthesizing and evaluating chemical standards for 
candidate chemicals. In the next step, validation of the association and a final causal assessment would be 
attempted through replication in more than one cohort, and biological plausibility would be evaluated. 

Biological plausibility could be evaluated with a targeted analysis of available human tissues by us
ing proteomics, metabolomics, or other methods to search for biological responses related to the disease. 
Alternatively, novel animal models or high-throughput in vitro assays described in Chapter 3 could be 
used to test candidate chemicals and generate biological-response data that could be compared with re
sponses related to the EW AS-identified association with disease. Evaluation of biological plausibility 
would ideally also include refinement of exposure, if necessary, and a systematic comparison of human 
exposures to exposures in test systems that are used to produce the supporting biological-response data. If 
similar toxicity data and models are used, responses to exposures in cohort members could be directly 
compared with those in test systems; the comparison would provide additional evidence on the likelihood 
of biological plausibility, which would be greater if responses to exposure were similar, and smaller if 
they were not. An example of the approach described was used to investigate colon cancer. The research 
began with three cross-sectional case-control studies and found an association between an unidentified 
metabolomic feature (analyte) and colon cancer (Ritchie et al. 2013). The association was later confirmed 
prospectively in the European Prospective Investigation into Cancer and Nutrition cohort, and the meta
bolic feature was identified as belonging to a group of ultra-long-chain fatty acids (Perttula et al. 2016). 

The EW AS approach offers exciting opportunities, but there are challenges that need to be ad
dressed. The challenges in using tools that produce "big data" are similar to those encountered in all 

chemicals, such as oxidative molecules, and disease-producing responses, such as inflammation, oxidative stress, 
and lipid peroxidation. 

3The committee notes that the acronym EW AS was originally proposed by Patel et al. (20 10) to refer to environ
ment-wide association studies, but others, such as Rappaport (2012), have used EW AS to refer more specifically to 
exposome-wide association studies, as used here by the committee. 
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FIGURE 4-2 A study design for developing new hypotheses on causation of disease by exposure. The committee 
notes that the approach and tools used to investigate exposures and biological pathways for "causality and preven
tion" are not necessarily different from those used to investigate biological pathways relevant for drug development. 
Source: Rappaport 2012. 

multiexposure studies. The study design and analysis have to be chosen carefully and assessed in terms of 
all classic biases to establish causality, that is, using principles that apply to targeted designs that focus on 
a single exposure and outcome. The EW AS approach adds the challenge of determining which exposures 
among many correlated ones have a causal role and which reflect a biological perturbation caused by oth
er agents. The temporal dynamics of the exposures need to be addressed with the stability of media con
centrations. An additional premise of the EW AS approach is that useful, biologically informative bi
omarkers can be identified, that is, that the chemicals in question are not too short-lived and exposure not 
too sporadic to be capured by only one or a few biospecimens obtained in a cross-sectional survey or co
hort study. 

The committee notes that use of retrospective case-control design for EW AS makes it impossible to 
be certain if associations observed reflect a causal relationship between exposures and the outcome inves
tigated or if the associations are a consequence of the disease or its treatment. As summarized by Thomas 
et aL (2012), the technique of Mendelian randomization (Davey Smith et aL 2004) is one way to address 
reverse causation and uncontrolled confounding; a gene is used as an instrumental variable (Greenland 
2000) to evaluate the causal effect of a biomarker on disease risk. In an approach that parallels the meet
in-the-middle approach, a novel two-step extension of this idea has been proposed for methylation studies 
that uses two genes as instrumental variables: one estimates the exposure-methylation association, and 
the other the methylation-disease association (Cortessis et aL 2012; Relton and Davey Smith 2012). 
There is an inherent assumption in that approach that the instrumental variable is indeed an appropriate 
instrument for exposure. 

New Analytical Challenges 

There are formidable challenges in integrating the -omics technologies and data into epidemiologi
cal research, and robust high-dimensional analytical techniques will be required to integrate and analyze 
all the data. For example, statistical analyses that consider many exposure variables simultaneously with
out strong priors, such as in EW ASs, greatly increase the risk of observing random associations (false 

102 Prepublication Copy 

ED_001449_00000002 



Advances in Epidemiology 

positives) because of multiple testing. Therefore, statistical tools for the analysis of multiple exposures 
have motivated investigators to draw on important lessons learned from the analysis of GW AS data (Shi 
and Weinberg 2011; Thomas et al. 2012); some are described below. In general, statistical techniques for 
high-dimensional data-such as those noted and others, including machine learning, dimension reduction, 
and variable-selection techniques-must be adapted to the longitudinal-data-accrual context to account 
for such issues as time-varying exposure and delayed effects (Buck Louis and Sundaram 2012). 

Multistep analytical approaches have been used to estimate health risks associated with different 
types or combinations of exposures. For example, estimates from EWAS analytical approaches with no a 
priori information might be quantified by using classical regression models while controlling for false 
discovery rate, as is done in GW ASs (Patel et al. 2010, 2013; Vrijheid et al. 2014). Furthermore, flexible 
and smoothing modeling techniques (Slama and W erwatz 2005) might be used to identify and character
ize possible thresholds or exposure-response relationships. 

Pathway analytical approaches are increasingly used for integrating and interpreting high
dimensional data generated by multiple -omics techniques; these approaches have enabled analyses of 
relationships between multiple exposures and multiple health outcomes. It is noteworthy that pathway 
analytical approaches have been used to identify molecular signatures associated with environmental 
agents through exploratory analyses of metabolites, proteins, transcripts, and DNA methylation in biolog
ical samples (Jennen et al. 2011; Vrijheid et al. 2014). As summarized by Vrijheid et al. (2014), once bi
omarkers have been identified, available libraries of biological pathways-such as Gene Ontology (Ash
burner et al. 2000), Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto 2000), Reactome 
(Fabregat et al. 2016), and Comparative Toxicogenomics Database (Davis et al. 2015)-can be searched 
and used to identify relevant biological pathways affected by exposures whether alone or in combination. 
Furthermore, biological pathways can be grouped and described using available software, such as Ingenu
ity Pathway Analysis (Kramer et al. 2014), Cytoscape (Saito et al. 2012), and Impala (Kamburov et al. 
2011). For example, those analytical approaches have been applied to several types of -omics data from 
systems that respond to 2,3,7,8-tetrachlorodibenzo-p-dioxin and to a broader set of environmental and 
pharmacological agents (Jennen et al2011; Kamburov et al. 2011). 

Other methods are also available to address the new analytical challenges. First, analysis of covari
ance techniques has been used to integrate individual exposures (obtained, for example, from personal 
wearable devices) and outdoor exposures (obtained, for example, from environmental monitoring) by ex
ploring the variance components of key exposures arising from multiple sources before creating exposure 
groups or clusters. Second, factor analysis and latent class analysis have proved useful for creating re
duced sets of exposure indexes on the basis of commonly occurring exposures while allowing people who 
share similar exposure profiles to be grouped. Third, to address the high-dimensional nature of epigenetic 
data, cluster-analysis techniques developed by Siegmund et al. (2006) can be applied to exposome-wide 
association-genomic studies; these techniques treat the cluster rather than individual epigenetic marks as a 
latent risk factor for disease (Cortessis et al. 2012). Fourth, structural equation modeling approaches 
might be used to define combined exposure variables on the basis of knowledge summarized by directed 
acyclic graphs (Budtz-J0rgensen et al. 2010). 

Bayesian profile regression models might be used to identify groups of people who have a similar 
exposome but show marked differences in the health-outcome variable of interest (Molitor et al. 2010; 
Papathomas et al. 2011; Vrijheid et al. 2014). Model-based clustering would be applied to the exposure 
data while allowing the outcome of interest to influence cluster membership. The Bayesian model-based 
clustering technique has been used, for example, to identify a cluster in a high-risk set for lung cancer-a 
group who has the characteristics of living near a main road, having high exposure to PM10 (particulate 
matter with aerodynamic diameter :SlO 11m) and to nitrogen dioxide, and carrying out manual work (Pa
pathomas et al. 2011; Vrijheid et al. 2014). 

The general need for caution in contending with the potential for false-positive associations that 
arise from analysis of large datasets is generally recognized among those handling such data. In addition 
to analytical approaches, such as correcting p values for multiplicity and using such parameters as the 
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false-discovery rate, the committee notes that epidemiological findings are interpreted holistically in the 
context of other relevant evidence. In the context of risk assessment, hazard identification would rarely, if 
ever, be based on an association found in a single epidemiological study, absent additional evidence. 

CHALLENGES AND RECOMMENDATIONS FOR ADVANCING EPIDEMIOLOGY 

With the emergence ofTox21 and ES21 approaches, the committee anticipates new connections be
tween biomarkers and human health outcomes. Epidemiological studies have an implicit role in providing 
the population counterpart that is needed to interpret biomarkers measured in laboratory studies through 
the general paradigm of molecular epidemiology and the meet-in-the-middle approach. For that purpose, 
epidemiologists need to generate human data (1) to harmonize doses used in in vitro high-throughput as
says with those associated with the exposures experienced in the population setting, (2) to explore the rel
evance of pathways identified in assay systems to human responses to the same agents and validate the 
predictive value of pathways detected in vitro assays for the occurrence of human disease, (3) to develop 
and validate models of human susceptibility, and (4) to compare and corroborate exposure-response rela
tionships obtained from in vitro assays and in human populations. 

The overall goal of gaining new insights by connecting -omics data generated in laboratory with da
ta gathered in population contexts will not be achieved without consideration of the needed research in
frastructure and the logistical barriers to bringing together datasets from disparate sources. The committee 
concludes by highlighting some challenges that face epidemiological research and recommendations for 
addressing them. The committee notes that several recommendations below call for developing or ex
panding databases. In all cases, data curation and quality evaluation should be routine in database devel
opment and maintenance. 

Developing the Infrastructure and Methods Needed to Advance the Science 

Challenge: When used in epidemiological studies, particularly ones with large biobank cohorts that 
might reach a million or more participants, -omics assays can generate large databases that need to be 
managed and curated in ways that will facilitate access and analysis. There is an additional challenge of 
analyzing extremely large datasets by using a hypothesis-driven or exploratory approach. 

Recommendation: Resources should be devoted to accelerating development of database manage
ment systems that will accommodate extremely large datasets, support analyses for multiple purposes, 
and foster data-sharing and development of powerful and robust statistical techniques for analyzing asso
ciations of health outcomes with -omics data and exploring such complex problems as gene-environment 
interactions. Such efforts are already under way in a number of fields, such as clinical research that in
volves health-care data, and should be extended to epidemiological research. 

Challenge: Standard methods are needed to describe the data that have been generated and that are 
shared among disciplines. The problem has been recognized in genomics and has led to the development 
of annotated gene ontologies, and similar approaches could be extended to other types of -omics data. 

Recommendation: Ontologies should be developed and expanded so that data can be harmonized 
among investigative groups, internationally, and among -omic platforms. Such ontologies generally do 
not incorporate data collected by epidemiologists. Such tools as STROBE should be expanded and 
adapted to the new generation of epidemiological studies; STROBE has already been expanded to en
compass molecular epidemiology (Gallo et al. 2011). The Framework Programme 7 EU Initiative
coordination of standards in metabolomics (COSMOS)-is developing "a robust data infrastructure and 
exchange standards for metabolomics data and other metadata" (Salek et al. 2015); this type of approach 
should be extended to other -omics data. 
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Data-Sharing 

Challenge: Data-sharing involves many complexities, particularly when the data are from human 
studies. However, data-sharing could be particularly beneficial if data could be accessed in a way that 
would support uniform analyses and integration through hierarchical analyses or meta-analysis. Data
sharing could also lead to more powerful assessments of hazard and of exposure-response relationships. 
One useful example is the pooling of data from studies of radon-exposed underground miners that sup
ported the development of risk models for indoor radon (Lubin et al. 1995). 

The same issues surrounding data-sharing arise in other domains in which big-data approaches are 
emerging, and a general culture of data-sharing will be needed. Regarding genomics, posting of sequenc
ing data has become the norm but with attention to anonymity. Similar sharing will ideally extend to other 
-omics data and lead to the development of a culture of data-sharing, pragmatic solutions to the inherent 
ethical problems, and standardized ontologies and databases. The committee notes that discussion around 
data-sharing is moving rapidly with regard to clinical trials; similar efforts around observational data are 
needed (Mascalzoni 2015). 

Recommendation: Steps should be taken to ensure sharing of observational data relevant to risk as
sessment so that, for example, biomarkers can be validated among populations. As noted above, to 
achieve that goal, standard ontologies should be developed and used for capturing and coding key varia
bles. There is also a need for systematic exploration of possible logistical and ethical barriers to sharing 
potentially massive datasets drawn from human populations. 

Collaborating and Training the Next Generation of Scientists 

Challenge: New research models based on biobanks and large cohorts derived from clinical popula
tions will become a valuable resource for applying -omics and other biomarker assays, but there are intrinsic 
limitations related to biases and the scope of data available in electronic records. There are also complicated 
issues related to access to private and confidential medical records and to sharing of such data. 

Recommendation: As biobanks and patient-based cohorts are developed, those developing them 
should engage with epidemiologists and exposure scientists on the collection of exposure data to ensure 
that the best and most comprehensive data possible are collected in this context. Finding ways to capture 
exposure information will be particularly challenging and will likely require ancillary data collection in 
nested studies. 

Challenge: A wide array of biospecimens is being collected and stored on the assumption that they 
will be useful in the future for a variety of purposes, including assays that cannot be anticipated. Storage 
methods and consent procedures need to support future use. 

Recommendation: Epidemiologists should anticipate future uses of biospecimens that are collected 
in the course of epidemiological research or other venues, such as screening or surveillance, and ensure 
that the array of specimens and their handling and storage will support multiple assays in the future. Such 
future-looking collections should be a design consideration, and input should be obtained from scientists 
who are developing new assays. 

Challenge: A new generation of researchers who can conduct large-scale population studies and in
tegrate -omics and other emerging technologies into population studies is needed. The next generation 
also needs sufficient multidisciplinary training to be able to interact with exposure and data scientists. 

Recommendation: The training of epidemiologists should be enriched with the addition of more in
depth understanding of the biological mechanisms underlying human diseases and of the biomarker as
says used to probe them. 
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Challenge: The landscape of epidemiological research is changing quickly with a move away from the 
fixed legacy cohorts of the past, such as the Nurses' Health Study, to pragmatically developed cohorts that 
are grounded in new and feasible ways of cohort identification and follow-up. There are also likely to be 
large national cohorts, such as the cohort already under development for the Precision Medicine Initiative. 
Those cohorts are intended as platforms for a wide array of research questions; they are designed as large 
banks ofbiospecimens but will have inherent limitations regarding the exposure information available. 

Recommendation: Epidemiologists, exposure scientists, and laboratory scientists should collaborate 
closely to ensure that the full potential of 21st century science is extended to and incorporated into epi
demiological research. Multidisciplinarity should be emphasized and sought with increasing intensity. As 
the new cohorts are developed, the opportunity to ensure that they will be informative on the risks posed 
by environmental exposures should not be lost. 
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5 

A New Direction for Risk Assessment and 
Applications of 21st Century Science 

The scientific and technological advances described in Chapters 2--4 offer opportunities to improve 
the assessment or characterization of risk for the purpose of environmental and public-health decision
making. To facilitate appreciation of the new opportunities, this chapter first discusses the new direction 
envisioned for risk assessment and then highlights applications (see Box 1-3) of 21st century science that 
can be used to improve decision-making. It provides concrete examples of pragmatic approaches for us
ing 21st century science along with long-standing toxicological and epidemiological approaches to im
prove the evidence used in decision-making. The chapter next addresses communication of the new ap
proaches to stakeholders. It concludes with a brief discussion of the challenges that they pose and 
recommendations for addressing the challenges. 

A NEW DIRECTION FOR RISK ASSESSMENT 

The seminal 1983 National Research Council (NRC) report Risk Assessment in the Federal Gov
ernment: Managing the Process (NRC 1983) defined risk assessment as "the use of the factual base to 
define the health effects of exposure of individuals or populations to hazardous materials and situations." 
The report noted that risk assessment had four components-hazard identification, exposure assessment, 
dose-response assessment, and risk characterization-and that risk assessments contain some or all of 
them. It stated that various data streams from, for example, toxicological, clinical, epidemiological, and 
environmental research need to be integrated to provide a qualitative or quantitative description of risk to 
inform risk-based decisions. It recognized explicitly the uncertainty that arises when information on a par
ticular substance is missing or ambiguous or when there are gaps in current scientific theory, and it called 
for inferential bridges or inferential guidelines to bridge such gaps to allow the assessment process to con
tinue. Risk assessment then (as now) relied heavily on the measurement of apical responses, such as tu
mor incidence and developmental delays, in homogeneous animal models, often with little exposure or 
epidemiological information. 

Although today's risk assessments generally support the same types of decisions as those in 1983, 
the tools available for asking and answering relevant risk-based questions have evolved substantially. As 
outlined in Chapters 2-4 of the present report, modem tools in exposure assessment, toxicology, and epi
demiology have increased the speed at which information can be collected and the scope of the data 
available for risk assessment. The focus has also shifted from observing apical responses to understanding 
biological processes or pathways that lead to the apical responses or to disease. The tools are designed to 
investigate or measure molecular changes that give insight into the biological pathways. Thus, a "factual 
base" is being created that is increasingly upstream of the adverse health effects that federal agencies seek 
to prevent or minimize. 

The Tox21 report (NRC 2007) fixed the new direction for risk assessment with its focus on discern
ing toxicity pathways, which were defined as "cellular response pathways that, when sufficiently per
turbed in an intact animal, are expected to result in adverse health effects." Since publication of that re
port, the understanding of biological processes underlying disease has increased dramatically and has 
provided an opportunity to understand the biological basis of how different environmental stressors can 
affect the same pathway, each potentially contributing to the risk of a particular disease. To operationalize 
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a risk-assessment approach that relies on mechanistic understanding, it will be necessary to understand 
the critical steps in the pathways, but beginning to apply the approach does not require knowing all path
ways. For example, the results of a subchronic rat study might indicate a failure of animals to thrive, 
which is manifested as decreased weight gain and some deaths over the course of the study, but no obvi
ous target-organ effects. Studies on the molecular effect of the chemical indicate that it is an uncoupler of 
oxidative phosphorylation. Epidemiological studies could then focus on biological processes that are en
ergy-intensive, such as heart muscle under stress. Exposure science could be used to measure or estimate 
population exposure to the stressor over space and time and could align toxicity data with environmental 
exposures for use in epidemiological studies. Assays to screen for the perturbation along with chemical
structure considerations might help to characterize risks posed by similarly acting chemicals, and expo
sure estimates could be generated for other chemicals hypothesized to exert a similar response. 

Today, there is an appreciation of the multifactorial nature of disease, that is, a recognition that a 
single adverse outcome might result from multiple mechanisms that can have multiple components. (See 
further discussion in Chapter 7.) Thus, the question shifts from whether A causes B to whether A increas
es the risk of B. Figure 5-1 provides an illustration of that concept, and Box 5-1 provides a concrete ex
ample. In the figure, four mechanisms (M1-~) and various combinations of six components (C1-C6) are 
involved in producing two outcomes (01 and 0 2). For example, three components (C1, C2, and C3) are 
involved in activating mechanism M1, which leads to outcome 01, and C1 is a component in several 
mechanisms. Here, a component is defined as a biological factor, event, or condition that when present 
with other components produces a disease or other adverse outcome; mechanism is considered to be com
prised of one or more components that cause disease or other adverse outcomes when they co-occur; and 
pathways are considered to be components of mechanisms. The model can incorporate societal factors 
that drive exposure or susceptibility, such as poverty, and that might ultimately lead to cellular responses 
that activate various mechanisms. For example, in mechanism M1, societal factors could perturb compo
nent C1, the same one that the chemical under consideration perturbs. Alternatively, societal factors could 
perturb components C2 and C3 of mechanism M1, which in combination with the chemical's direct pertur
bation of component C1 could fully activate the mechanism. The ability to identify the contribution of 
various components of a given mechanism and to understand the significance of changes in single com
ponents of a mechanism is critical for risk-based decision-making based on 21st century science. 

In the challenging context of multifactorial diseases, the 21st century tools allow implementation of 
the new direction for risk assessment that acknowledges the complexity of the determinants of risk. They 
can enable the identification of multiple disease contributors and advance understanding of how identified 
mechanisms, pathways, and components contribute to disease. They can be used to probe specific chemi
cals for their potential to perturb pathways or activate mechanisms and thereby increase risk. And the new 
tools provide critical biological information on how a chemical might add to a disease process and how 
individuals might differ in response; thus, they can provide insight on the shape of the population dose
response curve and on individual susceptibility to move toward the risk characterizations envisioned in 
report Science and Decisions: Advancing Risk Assessment (NRC 2009). As noted by NRC (2007, 

@+C2+C3 = M1 

@+c4 = M2 

c5 = M3 

@ +C6 = M4 
FIGURE 5-1 Multifactorial nature of disease illustrated with four mechanisms (M) that have various components 
(C) and lead to two outcomes (0). 
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2009), people differ in predisposing factors and co-exposures, so the extent to which any particular chem
ical perturbs a pathway and contributes to disease varies in the population. A challenge for the dose
response assessment is to characterize the extent to which the whole population and sensitive groups 
might be affected or, at a minimum, whether the perturbation exceeds some de minimis level. 

BOX 5-1 Example of Multifactorial Nature of Disease 

Sonic hedgehog (shh) is a signaling protein that is synthesized in mammalian embryos by the noto
chord and floor plate of the neural tube. Its function is to establish the ventral midline for the developing 
central nervous system. Interference with shh signaling during early embryonic development leads to 
the birth defect holoprosencephaly, in which the cerebrum fails to develop into two hemispheres. A 
number of events ("components" in Figure 5-1) can interfere with shh functioning. They include point 
mutations in the shh gene that lead to a partial loss of funtion (Roessler et al. 1997); mutations in the 
?-dehydrocholesterol reductase gene that prevent the post-translational modification of shh in which 
cholesterol is added to the protein (a step that is essential for signaling-the mutation can lead to a 
condition described as the Smith-Lemli-Opitz syndrome) (Battaile and Steiner 2000); cholesterol syn
thesis-inhibiting drugs, such as BM15,766, that act on the same enzyme (Kolf-Ciauw et al. 1997); and 
some plant alkaloids, such as cyclopamine, that inhibit the post-translational modification of shh (I ncar
dona et al. 1998). Any component at a high enough dose or rate is sufficient to cause holoprosenceph
aly, but there are probably cases in which the dose or rate of one or more of the components is insuffi
cient to disrupt shh signaling, but added together can perturb function. 

In this example, all the components are acting on the same target, shh, but in different ways: some 
affect the integrity of the protein (point mutations in the gene), some affect its post-translational modifi
cation, and some affect its ability to interact with its receptor.. Regardless, the result is the same: signal
ing by shh secreted by the notochord or ventral neural tube that is insufficient to establish a ventral 
field. The disruption of shh signaling is the "mechanism" in Figure 5-1. 

Shh is expressed elsewhere in the embryo where it has a role in limb development and tooth devel
opment. Limb abnormalities, such as extra digits or fused digits, are often observed in the Smith-Lemli
Opitz syndrome. In Figure 5-1, that syndrome would represent a second outcome of the same mecha
nism. As indicated in Figure 5-1, different mechanisms can produce the same outcome. For example, 
retinoic acid is also an important morphogenetic factor in limb development, and retinoic acid excess or 
deficiency can produce limb defects. That would represent a separate mechanism that would involve 
other components (for example, nutritional vitamin A deficiency and inhibition of the enzyme that con
verts retinol to retinoic acid) but lead to the same adverse outcome (digit defects). The figure below il
lustrates this example in terms of Figure 5-1. Abbreviations: CSI, cholesterol synthesis-inhibiting; 
DHCR7, ?-dehydrocholesterol reductase; R, retinol; RA, retinoic acid; shh, sonic hedgehog. 

+ + 

112 

+ 
Disruption 

ofshh 
Signaling 

Retinoic 
Acid 

Deficiency 

Holoprosencephaly 

Limb Abnormalities 

Prepublication Copy 

ED_001449_00000002 



A New Direction for Risk Assessment and Applications of 21st Century Science 

Although the discussion above focuses primarily on the toxicological and epidemiological aspects of 
the new direction, exposure science will play a critical role. The exposure data arising from the technolog
ical advances in exposure science will provide much needed and increasingly rich information. For exam
ple, comprehensive exposure assessments that use targeted and nontargeted analyses of environmental 
and biomonitoring samples or that use computational exposure methods will help to identify chemical 
mixtures to which people are exposed. Such comprehensive assessments will support evaluating risks of 
groups of similarly acting chemicals for single end points or investigating chemical exposures that might 
activate multiple mechanisms that contribute to a specific disease. Advancing our understanding of the 
pharmacokinetics will further the ability to translate exposure-response relationships observed in in vitro 
systems to humans, characterize susceptible populations, and ultimately reduce uncertainty in risk as
sessment. Personalized exposure assessment will provide critical information on individual variability in 
exposure to complement pharmacodynamic variability assessed in pathway-based biological test systems. 
Ultimately, these and other advances in exposure science in combination with advances in toxicology and 
epidemiology will provide an even stronger foundation for the new direction for risk assessment. 

APPLICATIONS 

Full implementation of the new direction for risk assessment or the visions described in the NRC re
port Science and Decisions and the Tox21 and ES21 reports (NRC 2007, 2009, 2012) is not yet possible, 
but the data being generated today can be used to improve decision-making in several areas. As noted in 
Chapter 1 (Box 1-3), priority-setting, chemical assessment, site-specific assessments, and assessments of 
new chemistries are risk-related tasks that can all benefit from incorporating 21st century science. The 
methods and data required to support the various tasks will probably differ, and confidence in them will 
depend to some extent on the context. For example, scientists have a great deal of experience in using 
laboratory data to support biological plausibility in epidemiology studies, and the new data can be rela
tively easily applied in that context. In contrast, methods used to support definitive chemical assessments 
will likely need extensive evaluation, and risk assessors will need to be trained in how to use them. In the 
following sections, the committee describes approaches that can use the new scientific approaches in spe
cific applications. 

Priority-Setting 

Tens of thousands of chemicals are used in commerce in the United States (Muir and Howard 2006; 
Egeghy et al. 2012) in various items-including building materials, consumer products, and craft sup
plies-and can cause exposure through product use and environmental releases associated with manufac
ture and disposal. Although the number of chemicals in the environment is large, the number of chemicals 
for which toxicity, exposure, and epidemiology datasets are complete remains small. Given the finite re
sources of government agencies and other stakeholders for investigating the risks associated with the wide 
array of chemicals present in people, places, and goods, mechanisms for setting priorities for chemical 
evaluation and determining appropriate risk-management strategies-reduction of use, replacement, or 
removal-are essential. 

Some categories of chemicals that are intended to have biological activity, such as drugs and pesti
cides, are routinely subjected to a suite of toxicity tests as required by law. However, extensive toxicity 
testing of most chemicals is not required, and the need for testing is determined by priority-setting 
schemes. For example, the National Toxicology Program (NTP 2016) sets testing priorities on the basis of 
the extent of human exposure, suspicion of toxicity, or the need for information to fill data gaps in an as
sessment, and the European Union's Registration, Evaluation, and Authorization of Chemicals (REACH) 
testing requirements are based predominantly on production volume (chemical quantity produced per an
num) and the potential for widespread exposure or human use, such as would occur with a consumer 
product (NRC 2006; Ruden and Hansson 2010). Considerations of potential toxicity have generally been 
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limited to alerts based on the presence of specific chemical features, such as a reactive epoxide moiety, or 
similarity to known potent toxicants. Using only those considerations to set priorities is clearly limited; 
additional hazard information that covers more biological space and exposure information that provides 
more detailed estimates of exposure from multiple sources and routes would improve the priority-setting 
process. 

As Tox21 tools-such as high-throughput screening, toxicogenomics,1 and cheminformatics-have 
become available, priority-setting has been seen as a principal initial application. High-throughput plat
forms, such as the US Environmental Protection Agency (EPA) ToxCast program described in Chapter 1, 
have produced data on thousands of chemicals. Toxicogenomic analyses have the potential to increase the 
biological coverage of in vitro cell-based assays and might be a useful source of data for priority-setting. 
For example, efforts are under way to assess transcriptomic responses in a suite of human cells by using 
positive control chemicals ultimately to determine whether biological pathways can be identified on the 
basis of select patterns of gene expression (Lamb et al. 2006) or whole-genome transcriptomics (de 
A brew et al. 20 16). Mismatches between in vitro and in vivo results might occur for several reasons, such 
as a lack of metabolism in the in vitro assays. As discussed in Chapter 3, lack of or low-level metabolic 
activation of an agent is widely recognized as a potential problem in in vitro studies, and development of 
methods to introduce metabolic systems into assays that can be run in high-throughput format is under 
active research. 

Cheminformatic approaches can also be used to set priorities for chemical testing by evaluating se
ries of chemicals for the presence of chemical features that are associated with toxicity-for example, 
through the use of such proprietary tools as DEREK2 -or by using decision trees that evaluate whether 
there are precedents in the literature for specific chemical features to be associated with a particular tox
icity outcome, such as developmental toxicity (Wu et al. 2013). Those methods have been automated and 
allow for rapid identification of chemicals that have specific chemical features that have been identified 
as potentially problematic, such as reactive functional groups, or that have a reasonably high similarity to 
chemicals that are potent toxicants, such as steroid-like substances (Wu et al. 2013). 

Several new high-throughput methods-for example, ExpoCast (Wambaugh et al. 2013) or ExpoDat 
(Shin et al. 2015)-have been developed to provide quantitative exposure estimates for exposure-based 
and risk-based priority-setting. The new technologies can estimate exposures more explicitly than older 
simpler models by taking into account chemical properties, chemical production amounts, chemical use 
and human behavior (likelihood of exposure), potential exposure routes, and possible chemical intake 
rates. Information produced via high-throughput exposure calculations could be used to refine priority
setting schemes. 

Depending on the context, hazard and exposure information could be used in various ways for prior
ity-setting. For example, screening based only on hazard could be particularly useful in situations, such as 
those involving changes in product composition, in which exposure information is unknown or evolving 
and there is an assumption that the product would be used in the same way with roughly the same expo
sure. Methods have been proposed for risk-based priority-settting that use a combination of high
throughput exposure and hazard information in which the highest estimated exposure and the lowest
measured-effect concentration are identified, and margins of exposure (differences between toxicity and 
exposure metrics) are calculated (Figure 5-2). Refinement of the margins of exposure by using reverse 
pharmacokinetic techniques to estimate exposure has also been proposed (Wetmore et al. 2013). Confi
dence in the approach should increase with broader biological coverage of the in vitro assays, innovations 
that add metabolic activation to the assays, methods that take into account toxicity that is associated with 
a particular route of exposure (such as inhalation), and improved accuracy of computational exposure 
models to predict human and ecosystem exposures. 

1Toxicogenomics is transcriptomic analysis of responses to chemical exposure. 
2See http://www.lhasalimited.org/. 
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Concentration 

FIGURE 5-2 Screening assessments could be used to estimate toxicity or predict exposure to rank chemicals for 
further testing or assessment. Chemicals that have the smallest margins of exposure (that is, upper bounds of expo
sure that are closest to or overlap with effect concentrations of toxicity) would be given the highest priority for fur
ther evaluation. 

Chemical Assessment 

Chemical assessments encompass a broad array of analyses, from Integrated Risk Information Sys
tem assessments that include hazard and dose-response assessments to ones that also incorporate expo
sure assessments to produce risk characterizations. Moreover, chemical assessments performed by the 
federal agencies cover chemicals on which there are few data to use in decision-making (data-poor chem
icals) and chemicals on which there is a substantial database for decision-making (data-rich chemicals). 
The following sections address how 21st century data could be used in the contrasting situations. 

Assessments of Data-Poor Chemicals 

Assessments of some data-poor chemicals might begin by evaluating outcomes whose mechanisms 
are known. That is, mechanisms of a few toxicity outcomes, such as genotoxicity and skin sensitization, 
are sufficiently well known for it to be possible to rely on mchanistically based in vitro assays-for ex
ample, the Ames assay and direct peptide reactivity assay-for which the Organisation for Economic Co
operation and Development guidelines already exist as the starting point for hazard assessment. For such 
well-defined outcomes for which in vitro assays are sufficient for characterization, the process of hazard 
assessment is relatively straightforward. Rather than using animal data as the starting point for establish
ing hazard, one replaces the animal data with data from the alternative method. In most cases, conclusions 
are qualitative and binary-for example, the chemical is or is not a genotoxicant. However, efforts are 
under way to provide quantitative ways of using in vitro test information to describe the dose-response 
characteristics of chemicals and ultimately to calculate a health reference value, such as a reference dose 
or a reference concentration (Figure 5-3). In the approach that uses animal data and in the approach that 
relies on in vitro results, uncertainty factors (UFs) are typically included to address interindividual differ
ences in human response and the uncertainty associated with extrapolating from a test system to people. 
Alternatively, a model can be used to extrapolate to low doses. Box 5-2 provides further discussion on 
uncertainty, variability, UFs, and extrapolation. 
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Animal-Based Approach 

Animal Dose- Health PK,PD 

Toxicity > Reference 
Data 

Model or Apply 
Value UFs to Account for 

Variability and 
Uncertainties 

Tox21 Concept 

Concentration- Reverse Health 
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FIGURE 5-3 A comparison of the animal-based approach to derive reference values compared with an approach 
under development that uses in vitro batteries where a biological pathway for a specific outcome has been elucidat
ed. The UFs (or models) for the approaches would differ but are used to make adjustments on the basis of uncertain
ty or variability or to extrapolate across doses. Abbreviations: PD, pharmacodynamics; PK, pharmacokinetics; POD, 
point of departure; UFs, uncertainty factors. 

BOX 5-2 Uncertainty and Variability in Assessment 

Risk assessment involves the estimation of risk associated with a particular exposure and charac
terization of the inherent uncertainties associated with the estimate. For human risk estimates based 
on animal data, the uncertainties include ones associated with possible species differences (between 
laboratory animals and humans) in pharmacokinetics and sensitivity, human population variability, and 
prediction of lifetime exposures from less-than-lifetime testing protocols, and others. Although the 
magnitude of each uncertainty can be approached experimentally (given enough resources and time), 
they have typically been addressed in noncancer assessment by assigning uncertainty factors (UFs) 
that have a specific value (usually 1, 3, or 1 0) to derive a toxicity or risk estimate. Using 21st century 
science will require new thinking about the uncertainties associated with risk assessment and their 
magnitude. Some aspects of uncertainty will be eliminated; for example, using human-derived cells 
and receptors will eliminate the need to account for interspecies differences in pharmacodynamic sen
sitivity. However, using an in vitro approach introduces new uncertainties, such as how an in vitro con
centration is related to an exposure scenario in an intact human or how an upstream molecular-level 
response is related quantitatively to a downstream disease outcome. Quantitative methods of combin
ing information from multiple assays or data streams into integrated testing strategies (see, for exam
ple, Jaworska et al. 2013; Rovida et al. 2015) have been used to represent the key steps of diseases 
to overcome the uncertainty associated with using molecular-level responses. 

It might also be possible to use biologically based dose-response modeling or other empirical mod
eling to replace a UF-based approach for extrapolation; this would agree with the NRC (2009) recom
mendation that dose-response modeling be based on a "formal, systematic assessment of back
ground disease processes, possible vulnerable populations, and modes of action." A modeling 
approach has been used to determine a dose-response relationship for a toxicity pathway that in
volves DNA damage and repair (Bhattacharya et al. 2011) that could be developed further to address 
human heterogeneity in response. Another approach to estimating interindividual variability is large
scale in vitro profiling of multiple human cell lines (Abdo et al. 2015a,b; Eduati et al. 2015), but this 
addresses only variability due to genetic differences, which are expected to be a minor contributor in 
many cases. The range of human population variability in exposure and response is poorly under
stood, but new technologies should improve our ability to quantify some uncertainties, including hu
man heterogeneity in vulnerability to exposures. Characterizing the new uncertainties and estimating 
their magnitude will be important as the new approaches are integrated into risk assessment. 
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Most toxicity outcomes involve multiple pathways by which chemicals can exert an adverse influ
ence, and not all pathways have been determined for many outcomes, such as organ toxicity and devel
opmental toxicity. For those outcomes, simple replacement of animal-derived information with in vitro 
information might not be possible. Another possible approach to evaluating chemicals is to use toxicity 
data on previously well-tested chemicals that are structurally similar to the chemical of interest (Figure 5-
4). Analogues are selected on the basis of similarities in chemical structure, physical chemistry, and bio
logical activity in in vitro assays. Comparisons of analogues with the chemical of interest are based on the 
premise that the chemical of interest and its analogues are metabolized to common or biologically similar 
metabolites or that they are sufficiently similar in structure to have the same or similar biological activity 
(for example, they activate receptors similarly). The similarity supports the inference that the chemical 
will induce the same type of hazard as the analogues although not necessarily at similar doses. 

The method described in Figure 5-4 depends on having a comprehensive database of toxicity data 
that is searchable by curated and annotated chemical structure (such as ACToR or DSSTox) and a con
sistent decision process for selecting suitable analogues. Wu et al. (20 1 0) published a set of rules for iden
tifying analogues and categorizing them as suitable, suitable with interpretation, suitable with precondi
tion (such as metabolism), or unsuitable for analogue-based assessment. The rules consider physical 
chemistry, potential chemical reactivity, and potential metabolism of the chemical. 

In many cases, a close similarity based on atom-by-atom matching is sufficient to classify two or 
more chemicals as suitable analogues for each other. However, atom-by-atom matching is not sufficient 
in every case. Small differences can sometimes alter the chemical activity in such a way that one metabol
ic pathway is favored over another or the chemical reactivity with various biological molecules changes. 
In practice, analogue-based assessment can be greatly facilitated by expert-rule-based considerations with 
molecular similarity. The approach was tested in a case study that used a blinded approach and found to 
be robust (Blackburn et al. 2011). Given that the total dataset for traditional animal toxicity data is large 
(millions of entries in ACToR and probably tens of thousands of entries for each toxicity outcome), the 
analogue-based approach could have great utility. Similar approaches are being developed and used for 
read-across assessment of chemicals submitted under the European REACH regulation. 

Animal Toxicity Dose-

Data on 
Appropriate 

Analogue 

Identify analogues on the basis of 
esimilar chemical structure 
esimilar physicochemical 
properties 
e Common metabolism 
ecommon key events 
e Similar gene expression 
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of chemical of 
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Value 

FIGURE 5-4 Approach to deriving health reference values when data on structurally similar chemicals are available. 
Similarity can be based on such characteristics as chemical structure, physicochemical properties, metabolism, key 
events in biological pathways, or gene expression; similarity of several characteristics increases confidence in the anal
ogy. The point of departure (POD) of the appropriate analogue would be adjusted on the basis of phannacokinetic dif
ferences between the chemical of interest and the analogue and other important biological factors, such as receptor ac
tivation; relevant tmcertainty factors would then be applied or models would be used. Accounting for uncertainty could 
include a determination of the degree of confidence in the read-across, including the number of analogues identified, 
the degree of similarity of the analogues to the chemical of interest, and the extent of the dataset on the analogues. 
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A structure-activity assessment can be thought of as a testable hypothesis that can be addressed with 
a variety of methods, such as those described in Chapter 3. Comparable metabolism can be assessed by 
using established methods for testing xenobiotic metabolism in vivo and in vitro with the recognition that 
metabolism can be complex for even simple molecules, such as benzene (McHale et al. 2012). Testing for 
similar biological activity can be based on what is understood about the primary pathways by which the 
chemicals in the class exert toxicity. If the mechanisms are not known, it is possible to survey some (for 
example, using ToxCast assays) or all (for example, by using global gene-expression analysis) of the uni
verse of possible pathways that are affected by the chemical to determine the extent to which the biologi
cal activities of the chemical of interest and its analogues are comparable. Toxicogenomic analyses have 
been found to be useful for identifying a mechanism in both in vivo and in vitro models (see, for example, 
Daston and Naciff 2010). With lower-cost methods now available, large datasets of gene-expression re
sponses for small molecules have become available (for example, the National Institutes of Health's Li
brary ofNetwork-based Cellular Signatures, LINCS), and these data can support determination of the ex
tent to which chemicals of similar structure are sufficiently comparable for read-across (Liu et al. 20 15). 

Combining cheminformatic and rapid laboratory-based approaches makes it possible to arrive at a 
surrogate point of departure for risk assessment that uses analogue data. The surrogate can then be adjust
ed for pharmacokinetic differences and bioactivity (Figure 5-5). The committee explored that approach in 
a case study on alkylphenols (see Box 5-3 and Appendix B). 
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Select best 
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Dose
Response 
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FIGURE 5-5 Approach for deriving acceptable values when an appropriate analogue cannot be identified solely 
through comparisons of structure and physicochemical data. In such a case, data from high-throughput in vitro as
says of the chemical of interest can be used as an additional source of information to identify the best analogue that 
can then be used to derive acceptable values. 

BOX 5-3 Case Study: Alkylphenols 

This case study illustrates the use of read-across for derivation of a health reference value. As de
tailed in Appendix 8, a data-poor alkylphenol (p-dodecylphenol) is compared with two data-rich al
kylphenols (p-octylphenol and p-nonylphenol). Comparisons are made on the basis of two-dimensional 
chemical structure and physicochemical properties. High-throughput in vitro data from ToxCast are 
used to add confidence to the selection of the analogues. Data from in vivo rat multigeneration studies 
of the data-rich alkyl phenols are used as a starting point for derivation of a health reference value and 
adjustments are suggested on the basis of the ToxCast data. Limitations of the analysis are discussed, 
and information that would add confidence to the results of the analysis is identified. 
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Eventually, it might be possible to conduct similar assessments of chemicals without adequate ana
logue data. Cheminformatic and laboratory methods could be used to generate hypotheses about the pos
sible activities of a new chemical, and the hypotheses could be tested virtually in systems-biology models 
and verified in higher-order in vitro models. As discussed in Chapter 3, computational models, such as the 
cell-agent-based model used in the EPA virtual-embryo project, have done a reasonable job of predicting 
the effects of potent antiangiogenic agents on blood vessel development by using high-throughput screen
ing data and information on key genes in the angiogenic pathway as starting points for model develop
ment (Kleinstreuer et al. 2013). The model can be run thousands of times-the virtual equivalent of thou
sands of experiments-and adjusted on the basis of the simulation results. The outcome of the model was 
evaluated in in vitro vascular-outgrowth assays and in zebrafish (Tal et al. 2014) and was found to be a 
good predictor of outcome in the assays. Such an approach clearly depends on a deep understanding of 
the biology underlying a particular process and how it can be perturbed and on sophisticated laboratory 
models that will support evaluation of the virtual model. This approach will require some knowledge of 
the key events that connect the initial interaction of an exogenous chemical with its molecular target and 
the ultimate adverse outcome. 

Regardless of whether the risk assessment is conducted with the read-across approaches depicted in 
Figures 5-4 and 5-5 or the pathway approach just described, there will be circumstances in which the un
certainty in the assessment needs to be reduced to support decision-making. That situation can arise be
cause the margin of exposure is too small, the possible mechanisms have still not been adequately de
fined, or the quantitative relationship between effects measured at the molecular or cellular level and 
adverse outcome have not been adequately defined. In such cases, one might use increasingly complex 
models-for example, zebrafish or targeted rodent testing-to assess biological activity and the outcomes 
of a chemical exposure. 

Assessment of Data-Rich Chemicals 

Some chemicals are the subjects of substantive databases that leave no question regarding the causal 
relationship between exposure and effect; that is, hazard identification is not an issue for decision-making. 
However, there might still be unanswered questions that are relevant to regulatory decision-making, such 
as questions concerning the effects of exposure at low doses, susceptible populations, possible mecha
nisms for the observed effects, and new outcomes associated with exposure. The advances described in 
Chapters 2-4 have the potential to reduce uncertainty around such key issues. The committee explores 
how 21st century science can be used to address various questions in a case study that uses air pollution 
as an example (see Box 5-4 and Appendix B). 

Cumulative Risk Assessment 

Cumulative risk assessment could benefit from the mechanistic data that are being generated. It is 
well understood that everyone is exposed to multiple chemicals simultaneously in the environment, for 
example, through the air we breathe, the foods we eat, and the products we use. However, risk assessment 
is still conducted largely on individual chemicals even though chemicals that have a similar mechanism 
for an outcome or that are associated with similar outcomes are considered as posing a cumulative risk 
when they are encountered together (EPA 2000; NRC 2008). Cumulative risk assessment of carcinogens 
is somewhat common in agencies, but cumulative risk assessment of noncarcinogens is not so common. 
One example of cumulative assessment is that of organophosphate pesticides whose mechanism is known 
to be acetylcholinesterase inhibition. 

Testing systems that evaluate more fundamental levels of biological organization (effects at the cel
lular or molecular level) might be useful in identifying agents that act via a common mechanism and in 
facilitating the risk assessment of mixtures. Identifying complete pathways for chemicals (from molecular 
initiating events to individual or population-level disease) could also be useful in identifying chemicals 
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BOX 5-4 Case Study: Air Pollution 

The consequences of exposure to air pollution have been extensively investigated, the evidence con
cerning a causal relationship between air pollution and lung cancer is strong, and various agencies, in
cluding the International Agency for Research on Cancer, have concluded that outdoor air pollution is car
cinogenic. However, there are still unanswered questions, such as which components are primarily 
responsible for carcinogenicity, whether there are interactions or synergies among the various compo
nents, what effects might occur at low exposures, and which groups might be at greater risk because of 
particular characteristics, such as smoking tobacco. As detailed in Appendix B, the first part of this case 
study describes advances in exposure science and toxicology, specifically -omics technologies that can 
help to characterize adverse effects, refine exposure further, and identity mechanisms and groups at risk. 

The second part of the case study (see Appendix B) examines the situation in which a new outcome 
is associated with a well-studied substance. In this case, recent evidence has emerged concerning an 
association between neurodevelopmental outcomes in children and air-pollution exposure. Here the 
question concerns mainly hazard identification because causal associations between air pollution and 
any specific neurodevelopmental outcome are not yet established. Advances in exposure science that 
could augment or improve new or continuing epidemiological investigations are described. Advances in 
toxicology that could be used to assess the developmental neurotoxicity risk associated with air pollu
tion are also described. 

that result in the same adverse health outcome through different molecular pathways. High-throughput 
screening systems and global gene-expression analysis are examples of technologies that could provide 
the required information. The techniques applied in support of cumulative risk assessment will also sup
port multifactorial risk evaluations discussed further in Chapter 7. 

Site-Specific Assessments 

Understanding the risks associated with a chemical spill or the extent to which a hazardous-waste 
site needs to be remediated depends on understanding exposures to various chemicals and their toxicity. 
The assessment problem contains three elements: identifying and quantifying chemicals present at the 
site, characterizing their toxicity, and characterizing the toxicity of chemical mixture. Thus, one might 
consider this situation to be an exposure-initiated assessment in which exposure information is a starting 
point as illustrated in Figure 5-6. In this context, exposure information means information on newly iden
tified chemicals and more complete characterization of exposure to chemicals previously identified at a 
site. Box 5-5 provides two specific examples of exposure-initiated assessments. 

Site of Interest Hazard & Dose-Response 

Risk Assessment 
Exposure 

Intervention, 
Cleanup, Other 

FIGURE 5-6 Overview of approach and decisions for an exposure-initiated assessment. Abbreviations: Epi, epide
miological; EW AS, exposome-wide association study. 
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BOX 5-5 Two Examples of Exposure-Initiated Assessment 

In the first example of exposure-initiated assessment, scientists who were investigating Superfund 
sites around the Portland Harbor in Oregon recently found novel environmental degradation products of 
common polycyclic aromatic hydrocarbons (PAHs) (O'Connell et al. 2013). Thirty-eight oxygenated 
PAHs were identified as toxicologically uncharacterized members of a PAH mixture at the site. Given 
the urgent need for testing, novel high-throughput toxicity testing in zebrafish has been conducted on 
representative mixtures of PAHs that were found in soil and water media of Portland Harbor (Knecht et 
al. 2013), and passive sampling devices have been deployed to characterize concentrations in species 
of the aquatic ecosystem that are used as human food (Paulik et al. 2016). 

In the second example, nontargeted chemical analysis of dust samples that were collected as part of 
the US American Healthy Homes Survey was conducted (Rager et al. 2016). Nontargeted analysis re
vealed a spectrum of chromatographic features (elution time, exact mass, and isotopic signature) that 
could not initially be assigned to distinct chemicals. Some features were later identified by using analyt
ical standards that were selected on the basis of probable matches to chemical structures in EPA's Dis
tributed Structure-Searchable Toxicity database. Initial screening of the group of identified chemicals
including pesticides, nicotine, and perfluorooctanoic acid-was completed by using exposure and bio
activity estimates from ExpoCast and ToxCast, respectively, and information on detection frequency 
and abundance; the information was presented in ToxPi format. The authors also reported the pres
ence of large numbers of features that remain unidentified and untested. The approach could be ap
plied to other environmental media, such as soil and water at Superfund sites or water streams that are 
used as public drinking-water supplies but have been tested only for small numbers of chemicals. 

The advances described in Chapters 2-4 can address each element involved in site-specific assess
ments. Targeted analytical-chemistry approaches, particularly ones that use gas or high-performance liq
uid chromatography coupled with mass spectrometry, can identify and quantify chemicals for which 
standards are available. Nontargeted analyses can help to assign provisional identities to previously uni
dentified chemicals. The committee explored the application of advances in exposure science to a case 
study of a large historically contaminated site (see Box 5-6 below and Appendix C). 

As for toxicity characterization, assessments of waste sites and chemical releases often involve 
chemicals on which few toxicity data are available. In the case of waste sites, EPA assigns provisional 
reference values for a number of chemicals by using the Provisional Peer Reviewed Toxicity Value 
(PPRTV) process. However, because of the amount or quality of the data available, the PPRTV values 
tend to entail large uncertainties. Analogue-based methods coupled with high-throughput or high-content 
screening methods have the potential to improve the PPRTV process. Identification of well-tested appro
priate analogues to an untested chemical at clean-up sites can provide more certain estimates of the hazard 
and potency of the chemical, and the appropriateness of the analogues can be confirmed with high
throughput screening or high-content data that show comparability of biological targets or other end 
points and relative potency. Although the high-throughput or high-content models still require validation, 
the read-across approach could be applied immediately. 

In the case of chemical releases, few data might be available on various chemicals-a situation simi
lar to waste sites-but decisions might need to be made quickly. The committee uses the scenario of a 
chemical release as a case study to examine how Tox21 approaches can be used to provide data on a data
poor chemical quickly (see Box 5-6 below and Appendix C). 

As for understanding the toxicity of chemical mixtures, high-throughput screening methods provide 
information on mechanisms that can be useful in determining whether any mixture components might act 
via a common mechanism, affect the same organ, or cause the same outcome and thus should be consid
ered as posing a cumulative risk (EPA 2000; NRC 2008). High-throughput methods can also be used to 
assess the toxicity of mixtures that are present at specific sites empirically rather than assessing individual 
chemicals. Such real-time generation of hazard data was conducted on the dispersants that were used to 
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BOX 5-6 Case Studies: Site-Specific Assessments 

The committee created three case studies related to site-specific assessment that explore each ele
ment of the problem and how to incorporate 21st century science into the evaluations. Appendix C pro
vides the details of the case studies described below. 

D Identifying chemicals present. The committee considers a large historically contaminated site 
with land and surface water near a major population center and describes how targeted and untar
geted analyses of chemicals can be used at the site. 

D Characterizing toxicity. The committee considers the release of 4-methylcyclohexanemethanol 
into the Elk River about 1 mile upstream of a water intake facility for the city of Charleston, WV, in 
2014 and describes exposure and toxicity screening tools that help to understand the human risk. 

D Characterizing mixture toxicity. The committee considers a toxicity assessment of complex mix
tures observed in environmental samples, tissues, and biofluids and illustrates how a biological read
across approach could be used to conduct an assessment. 

treat the crude oil released during the Deepwater Horizon disaster (Judson et al. 2010) to determine 
whether some had greater endocrine activity or cytotoxicity than others. Endocrine assays were the focus 
because of the known estrogenic activity of nonylphenol ethoxylates; nonylphenol (the degradation prod
uct of nonylphenol ethoxylates) is known to be estrogenic. 

It is possible to use high-throughput assay data as the basis of a biological read-across for complex 
mixtures. For example, an uncharacterized mixture could be evaluated in high-throughput or high-content 
testing, and the results could be compared with existing results for individual chemicals or well
characterized mixtures. That process is similar to the connectivity mapping approach (Lamb et al. 2006) 
in which the biological activity of a single chemical entity is compared with the fingerprint of other chem
icals in a large dataset, and it is assumed that chemicals with like biological activity have the same mech
anism. That approach for single chemicals can be used for uncharacterized mixtures. One would still not 
know whether the biological activity was attributable to a single chemical entity or to multiple chemicals, 
but it would not matter if one were concerned only about characterizing the risk associated with that par
ticular mixture. The committee notes that it is possible that a mixture will exhibit more than one biologi
cal activity, particularly at high concentrations, but it should be possible to gain a better understanding of 
the biological activity by testing multiple concentrations of the mixture. The committee explores a biolog
ical read-across approach for complex mixtures further in a case study that considers the hypothetical site 
imagined in the first case study (see Box 5-6 and Appendix C). 

Finally, new methods in exposure science, -omics technologies, and epidemiology provide another 
approach to generate hypotheses about the role of chemicals and chemical mixtures in specific disease 
states and to gather information about potential risks associated with specific sites. Information generated 
on chemical mechanisms, particularly of site-specific chemical mixtures, might be useful for identifying 
highly specific biomarkers of effect that can be measured in people who work or reside near a site of con
cern. Measurement of biomarkers has advantages over collection of data on disease outcome because 
many diseases of concern, such as cancer, are manifested only after chronic exposure or after a long la
tency period. Such measurement could also be of value in determining the effectiveness of remediation 
efforts at the site if biomarkers can be measured before and after mitigation. Real-time individualized 
measurements of exposure of people near a site are also possible and could provide richer data about peak 
exposures or exposure durations. 

Assessment of New Chemistries 

Green chemistry involves the design of molecules and products that are optimized to have minimal 
toxicity and limited environmental persistence, are (ideally) derived from renewable sources, and perform 
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comparably with or better than the chemicals that they are replacing. The green-chemistry approach often 
involves synthesis of new molecules on which there are no toxicity data and that might not have close 
analogues. Green-chemistry design is another case in which the use of modern in vitro toxicology meth
ods could have great utility by providing guidance on which molecular features are associated with great
er or less toxicity and by identifying chemicals that do not affect biological pathways that are known to be 
relevant for toxicity (Voutchkova et al. 20 10). There are a few examples of the use of in vitro toxicity 
methods to determine whether potential replacement chemicals are less toxic. For example, Nardelli et al. 
(20 15) evaluated the effects of a series of potential replacements for phthalate plasticizers on Sertoli cell 
function, and high-throughput testing has been used to evaluate alternatives to bisphenol A in the manu
facture of can linings (Seltenrich 2015). Using high-throughput methods in this context is not conceptual
ly different from screening prospective therapeutic agents for maximal efficacy and minimal off-target 
effects. Box 5-7 and Appendix D describe a case study of assessment of new chemistries. 

One could use the same methods as described above to evaluate the toxicity of newly discovered 
chemicals in the environment, for example, from unexpected breakdown products of a widely used pesti
cide. If breakdown products are chemically related to their parent molecules, cheminformatics (read
across) methods could also be appropriate for estimating their toxicity. 

COMMUNICATING THE NEW APPROACHES 

Many of the approaches introduced in this chapter will be unfamiliar to some stakeholder groups. 
Communicating the strengths and limitations of the approaches in a transparent and understandable way 
will be necessary if the results are to be applied appropriately and will be critical for the ultimate ac
ceptance of the approaches. The information needs and communication strategies will depend on the 
stakeholder group. The discussion here focuses on four stakeholder groups: risk assessors, risk managers 
and public-health officials, clinicians, and the lay public. 

Risk-assessment practitioners who are responsible for generating health reference values need to 
have information on the details of the new approaches and on how to apply their results to predict human 
risk. They probably need formal training in the interpretation and application of new data streams emerg
ing from exposure science, toxicology, and epidemiology. Read-across, for example, is perhaps the most 
familiar of the alternative approaches described in this chapter, but most risk assessors still need a great 
deal of training in identifying appropriate chemical analogues on which to base a read-across and in ac
counting for decreased confidence in the assessment if there are few analogues or less than perfect struc
tural matches. They also need to develop new partnerships that can help them with their tasks, for exam
ple, with computational and medicinal chemists who develop strategies for analogue searching, gauge the 
suitability of each analogue, or determine the likely metabolic pathway of a chemical of interest and its 
analogues to see whether they become more or less alike as they are biotransformed. 

Most risk assessors are already familiar with the integration of traditional data for risk assessment, 
but they will need help in understanding how to integrate novel data streams and how much confidence 
they can have in the new data. One approach will be to compare the results from new methods with more 
familiar data sources, particularly in vivo toxicology studies. For example, EPA recently concluded that a 
high-throughput battery of estrogenicity assays is an acceptable alternative to the uterotrophic assay for 
tier 1 endocrine-disrupter screening (Browne et al. 2015; EPA 2015). The communication strategy in this 
case involved a description of the purpose of the assay battery, an explanation of the biological space 
covered by the battery (that is, the extent of the estrogen-signaling pathway being evaluated and the re
dundancy of the assays), a description of a computational model that integrates the data from all the as
says and discriminates between a true response and noise, and a comparison with an existing method that 
showed the new way working in most cases. Papers like the one cited provide useful models for further 
technical communication to risk assessors. 

Risk managers and public-health officials do not need information that provides details on the as
says or how they are applied to risk assessment; they do need to know the uncertainty associated with 
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BOX 5-7 Case Study: Assessment of New Chemistries 

This case study describes a hypothetical example in which there are three choices of "new" chemi
cals for use in a manufacturing process that will result in human exposure. In Appendix D, the commit
tee describes in vitro high-throughput data available on the chemicals and what those data might mean. 
It then considers several scenarios in which human exposure could occur and calculates indoor air re
leases that correspond to the in vitro bioassay data. The committee concludes with a discussion of how 
the data could be used in the decision-making process. 

risk estimates and the confidence that they should place in them. Communication to this group will 
need to address those issues. There will be cases in which the new approaches will provide information 
that was heretofore unavailable to them, and the new information will assist them in making decisions 
about site remediation or acceptable exposure levels. This chapter discussed the possibility of using 
read-across to increase the number of chemicals evaluated in the PPRTV process, and Appendix C 
highlights a case study that uses cheminformatic approaches to address the developmental-toxicity po
tential of 4-methylcyclohexanemethanol, a chemical for which there was no experimental data on that 
outcome. Both examples illustrate how new approaches can provide information that would not have 
been available in any other way. However, the uncertainties associated with the new approaches need 
to be communicated. 

As scientists advance the vision of identifying the many components that are responsible for multi
factorial diseases, it will be necessary to communicate with clinicians and the public about how the fac
tors have been identified, how each is related to others, and whether it is possible to reduce exposure to 
one or more factors to decrease disease risk. Physicians are beginning to embrace new methods as ge
nomic information on individual patients becomes more available and personalized medicine becomes 
more of a reality, but there will still need to be communication to physicians in venues that they are likely 
to read and with diagnostic and treatment approaches that they are likely to be able to implement. 

As for the general public, although many people get their health information from their doctors, 
some are far more likely to get medical information from the Internet and the popular press. The infor
mation that those media outlets require about new approaches is not qualitatively different from what cli
nicians need, but it needs to be presented in a format that is digestible by educated laypeople. 

Finally, enhanced communication among the scientific community both nationally and international
ly is vitally important for fully achieving the goals outlined in the Tox2l and ES21 reports and for gain
ing consensus regarding the utility of the new approaches and their incorporation into decision-making. 
The communication should include enhanced and more transparent integration of data and technology 
generated from multiple sources, including academic laboratories. Universities could serve as a commu
nication conduit for multiple stakeholders, particularly clinicians and the lay public; thus, their engage
ment should be strategically leveraged. Ultimately, a more multidisciplinary and inclusive strategy for 
scientific discourse will help attain broad understanding and confidence in the new tools. 

CHALLENGES AND RECOMMENDATIONS 

As noted earlier in this report, there are challenges to achieving the new direction for risk assess
ment fully. Some, such as model and assay validation, are addressed in later chapters. Here, the commit
tee highlights a few challenges that are specific to the applications and approaches described in the pre
sent chapter and offers some recommendations to address them. 

Challenge: For risk assessment of individual chemicals, various approaches, such as cheminformat
ics and read-across, are already being applied because existing approaches are insufficient to meet the 
backlog of chemicals that need to be assessed. However, methods for grouping chemicals, assessing the 
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suitability of analogues, and accounting for data quality and confidence in assessment are still being de
veloped or are being applied inconsistently. 

Recommendation: Read-across and cheminformatic approaches should be developed further and in
tegrated into environmental-chemical risk assessments. High-throughput, cell-based assays and high
information-content approaches, such as gene-expression analysis, provide a large volume of data that can 
be used to test the assumptions made in read-across that analogues have the same biological targets and 
effects. Read-across and cheminformatics approaches depend on high-quality databases that are well cu
rated; data curation and quality assurance should be a routine part of database development and mainte
nance. New case studies that use cheminformatic and read-across approaches could demonstrate new ap
plications and encourage their use. 

Challenge: Approaches that use large data streams to evaluate the potential for toxicity present a 
challenge in synthesizing information in a way that supports decision-making. 

Recommendation: Statistical methods that can integrate multiple data streams and that are easy for 
risk assessors and decision-makers to use should be developed further and made transparent and user
friendly. 

Challenge: Measuring biological events that are far upstream of disease states will introduce new 
sources of uncertainty into the risk-assessment process. Using data on those events as the starting point 
for risk assessment will require new approaches for risk assessment that are different from the current 
methods, which identify a point of departure and apply default uncertainty factors or extrapolate by using 
mathematical models. 

Recommendation: New types of uncertainty will arise as the 21st century tools and approaches are 
used, and research should be conducted to identity these new sources and their magnitude. Some tradi
tional sources of uncertainty will disappear as scientists rely less on animal models to predict toxicity, and 
these should also be identified. 
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6 

Model and Assay Validation and Acceptance 

Models and test systems for toxicity testing have evolved over past decades. Their strengths and 
weaknesses have been debated, and most agree that no inherently perfect model could exist (Cunningham 
2002). Gradually, however, regulatory agencies in the United States and elsewhere have come to accept 
data from mathematical models and from assay systems that use mammalian and other experimental or
ganisms, cultured cells, and bacteria for evaluating potential hazards and quantifying risks posed by 
chemical exposures. Some model systems have become nearly indispensable for risk assessment even 
though inherent shortcomings and imperfections have been widely acknowledged. Such systems include 
rodent cancer bioassays, multigeneration tests of reproductive and developmental outcomes in rodents, 
and bacterial mutagenicity tests. Such tests and resulting data have become commonly accepted for use in 
human-health assessments and often serve as a benchmark or comparator for new assays and data types 
that are emerging (Thomas et al. 2012). 

Before new assays are used in particular regulatory-decision contexts, such as pesticide registration, 
their relevance, reliability, and fitness for purpose are established and documented. Such characterization 
of assays has evolved into elaborate processes that are commonly referred to as validation of alternative 
methods. Formal mechanisms for validation have been established in the United States, Europe, and many 
Asian countries. In addition, an international standardization of validation methods is emerging to ensure 
reciprocity and uniformity of outcomes (Burden et al. 2015). According to the Organisation for Economic 
Co-operation and Development (OECD), validation is "the process by which the reliability and relevance 
of a particular approach, method, process or assessment is established for a defined purpose" (OECD 
2005). In that context, the term reliability refers to the reproducibility of the method "within and between 
laboratories over time, when performed using the same protocol." The term relevance is meant to ensure 
the scientific underpinning of the test and of the outcome that it is meant to evaluate so that it tests "the 
effect of interest and whether it is meaningful and useful for a particular purpose." The Institute of Medi
cine (IOM 2010) defined the process of validation as "assessing [an] assay and its measurement perfor
mance characteristics [and] determining the range of conditions under which the assay will give reproduc
ible and accurate data." 

In plain language, a validation process is used to establish for developers and users of an assay that 
it is ready and acceptable for its intended use. Although the purpose and principles of validation remain 
generally constant, the underlying process must evolve to reflect scientific advances. Indeed, the availa
bility of new tests has increased dramatically; many are attractive in cost, time, or use of animals and an
imal-welfare considerations. The number of chemicals that have been evaluated with new test methods 
has also increased dramatically (Kavlock et al. 2009; Tice et al. 20 13). The reliability of the new tests is 
of general concern given that existing validation processes cannot match the pace of development of new 
tests. 

The new tests are being developed by scientists in academe, private companies, and government la
boratories; sometimes, the utility of a particular marker, assay, or model for decision-making is not im
mediately recognized by the original developer. Likewise, the resources, time, and effort that are invested 
in the development can be vastly different and not reflect the ultimate utility of a particular test. Thus, the 
original developers might not be involved in determining whether a test is fit for purpose for a particular 
application or provides the degree of certainty that is required to provide information necessary in a par
ticular decision-making context. 
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In this chapter, the committee describes existing frameworks and efforts for validation of new alter
native or nontraditional methods, assays, and models and provides recommendations on the key elements 
of validation for toxicity testing. The committee emphasizes that validation, although important, is not the 
only factor involved in achieving regulatory acceptance of new alternative test methods. Furthermore, the 
committee notes that although assay and model validation for toxicity testing is already an established 
process, other important disciplines, such as exposure science, have yet to develop formal criteria and 
processes for validation, although some have developed approaches to establish best practices. 

GUIDANCE ON THE VALIDATION OF IN VITRO 
AND OTHER NEW TEST METHODS 

United States 

The Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) was 
established by the National Institute of Environmental Health Sciences (NIEHS) in 1997 as an ad hoc 
federal interagency committee to address the growing need for obtaining regulatory acceptance of new 
toxicity-testing methods (NIEHS 1997). The National Toxicology Program (NTP) Interagency Center for 
the Evaluation of Alternative Toxicological Methods (NICEATM) was also established in NIEHS to sup
port ICCVAM in "the development and evaluation of new, revised, and alternative methods to identify 
potential hazards to human health and the environment with a focus on replacing, reducing, or refining 
animal use" (Casey 2016). Since 2000, ICCVAM activities have been governed by the ICCVAM Author
ization Act (2000), which specifies that 15 agencies of the federal government-including the Food and 
Drug Administration, the US Environmental Protection Agency, the Consumer Product Safety Commis
sion, the Department of Transportation, the Occupational Safety and Health Administration, and the US 
Department of Agriculture-be represented on ICCVAM. 

ICCV AM established the Guidelines for the Nomination and Submission of New, Revised, and Al
ternative Test Methods (NIEHS 2003) and has successfully evaluated and recommended numerous alter
native test methods for regulatory use. Test methods that have been evaluated and recommended for use 
by NICEATM and ICCV AM are aimed at acute systemic toxicity, dermal corrosivity and irritation, de
velopmental toxicity, endocrine disruption, genetic toxicity, immunotoxicity (allergic contact dermatitis), 
biologics and nanomaterials, pyrogenicity, and ocular toxicity. The evaluation process includes not only 
individual test methods but computational and integrated testing strategies (Pirone at al. 2014). 

ICCV AM-recommended methods, however, have not always been implemented, and this has caused 
increasing concern. A potential solution for the near term has been to integrate some activities of 
NICEATM with those of the federal government's Tox21 consortium (Birnbaum 2013). Specifically, the 
revised charge to NICEATM now consists of supporting ICCV AM; providing bioinformatics and compu
tational toxicology support to NTP and NIEHS projects, especially those related to Tox21; conducting 
and publishing analyses of data from new, revised, and alternative testing approaches; and providing in
formation to test-method developers, regulators, and regulated industries (Casey 2016). 

Another highly relevant activity that was conducted under the auspices of the Institute of Medicine 
(IOM) was the report of the Committee on the Evaluation of Biomarkers and Surrogate Endpoints in 
Chronic Disease (IOM 2010). Specifically, that committee recommended a three-part framework for bi
omarker evaluation consisting of analytical validation (Is the biomarker able to be accurately measured?), 
qualification (Is the biomarker associated with the clinical end point of concern?), and use (What is the 
specific context of the proposed use?). Although the primary users of the IOM framework are stakehold
ers that are concerned with evidence-based decision-making in medicine and public health, the framework 
has great relevance to the process for validating any new test method (see Box 6-1 ). 
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BOX 6-1 Summary of Institute of Medicine Recommendations for Effective Biomarker Evaluation 

1. The biomarker evaluation process should consist of the following three steps: 
a. Analytical validation: analyses of available evidence on the analytical performance of an assay; 
b. Qualification: assessment of available evidence on associations between the biomarker and 

disease states, including data showing effects of interventions on both the biomarker and clini
cal outcomes; and 

c. Utilization: contextual analysis based on the specific use proposed and the applicability of 
available evidence to this use. This includes a determination of whether the validation and qual
ification conducted provide sufficient support for the use proposed. 

2a. For biomarkers with regulatory impact, the Food and Drug Administration (FDA) should convene 
expert panels to evaluate biomarkers and biomarker tests. 

2b. Initial evaluation of analytical validation and qualification should be conducted separately from a 
particular context of use. 

2c. The expert panels should reevaluate analytical validation, qualification, and utilization on a con
tinual and a case-by-case basis. 

Source: 10M (2010). 

BOX 6-2 Sources of OECD Guidance on Validation of Alternative Test Methods and Models 

D Guidance Document on the Validation and International Acceptance of New or Updated 
Test Methods for Hazard Assessment (OECD 2005) 

D Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships 
[(Q)SAR] Models (OECD 2007) 

D Guidance Document for Describing Non-Guideline In Vitro Test Methods (OECD 2014) 

European Union 

In the European Union, formal activities for validating alternative approaches to animal testing 
started in 1991 with creation of the European Centre for the Validation of Alternative Methods 
(ECV AM). Since 2011, ECV AM's tasks have been subsumed by the European Union Reference Labora
tory for Alternatives to Animal Testing (EURL ECVAM), part of the European Commission's Joint Re
search Centre. The general aims and approaches of EURL ECV AM are similar to those of ICCV AM and 
include activities to advance the scientific and regulatory acceptance of nonanimal tests that are important 
to biomedical sciences through research, test development, and validation and maintaining databases 
(Gocht and Schwarz 2013) and to co-ordinate at the European level the independent evaluation of the rel
evance and reliability of tests for specific purposes. The guiding principles of the EURL ECV AM work 
are based on ECV AM recommendations concerning the practical and logistical aspects of validating al
ternative test methods in prospective studies (Balls 1995; Hartung et al. 2004; EC 2016a); the recommen
dations are in internal guidelines and strategy papers, for example, ECV AM Guidance on Good Cell Cul
ture Practice (Coecke et al. 2005), the OECD guidelines (see Box 6-2), and relevant parts of the EU Test 
Methods Regulation (EC 2008). ECV AM and the European Partnership for Alternative Approaches to 
Animal Testing (Kinsner-Ovaskainen et al. 2012) have also made conclusions and offered recommenda
tions on the validation of integrated approaches. 
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International 

At the international level, OECD has been active, especially in the last 5 years, in coordinating the 
development of formal guidelines for validation of individual tests, alternative methods, and computa
tional models (see Box 6-2). The 1981 Mutual Acceptance of Data Decision for the Assessment of Chem
icals including Pesticides C(81)30(Final) stipulated that "data generated in the testing of chemicals in an 
OECD Member country in accordance with OECD Test Guidelines and OECD Principles of Good Labor
atory Practice shall be accepted in other Member countries for purposes of assessment and other uses re
lating to the protection of man and the environment." It created an impetus for establishing a formal inter
national process for validating test methods. A formal process now exists for development and adoption 
of OECD test guidelines, part being a formal validation, where the nomination usually begins at the na
tional level, proceeds through the expert committees (from the Working Group ofNational Coordinators 
of the Test Guidelines Programme to OECD Chemicals and Environmental Policy Committees), and ul
timately is approved by the OECD Council. 

Opinions of the Broader Scientific Community on Validation 

Because of the importance of validating novel toxicity-testing methods and the reality of the rapid 
proliferation of new tests, many opinions have been voiced in the last decade on how the validation pro
cess needs to evolve. Although there are various degrees of formality in the suggested changes, all authors 
agree that the existing frameworks are not optimal and could be improved. Hartung (2007) argued for a 
move away from validating by comparison with existing "gold standards,"1 a common testing approach 
that might not reflect molecular and physiological realities of the human body and argued that tests should 
be developed to provide more mechanistic information and thus help to establish causality. 

Judson and colleagues (Judson et al. 2013) suggested the following general principles: follow cur
rent validation practice to the extent possible and practical, increase the use of reference compounds to 
demonstrate assay reliability and relevance better, de-emphasize the need for cross-laboratory testing, and 
implement a Web-based, transparent, and expedited peer-review process. 

Patlewicz and colleagues (Patlewicz et al. 2013) argued that standard steps of validation practice 
should still apply and that the validation process for any new test must articulate the scientific and regula
tory rationale for the test, the relationship between what the test measures and the resulting biological ef
fect of interest, a detailed protocol for the test, the domain of applicability, criteria for describing the re
sults of the test, known limitations, and standards for determining good performance (positive and 
negative standards). 

Finally, the International Life Sciences Institute Health and Environmental Sciences Institute, an in
dustry-funded nonprofit organization, has recently begun a new project on developing a "Framework for 
Intelligent Non-Animal Methods for Safety Assessment."2 This activity is pursuing a mission to bring 
together the collective knowledge of scientists from academe, industry, and government with an eye to 
the development of criteria to establish confidence in using nonanimal methods to support regulatory de
cisions and to develop a framework organized around IOM (2010) principles noted above. 

1A gold standard is defined as a reference standard that is regarded as the best available to determine a particular 
condition. The gold standard is the benchmark with which a new procedure is compared. Data from clinical trials 
and epidemiological studies provide the best examples of benchmarks for the potential effects of drugs or chemicals 
on the human body. In toxicology, there are cases in which the currently used methods are regarded as inadequate to 
predict human toxicity. In such cases, other validation methods need to be considered. 

2See http:/ I o ld.hesiglobal. org/i4a/pages/index. cfm ?pageid=368 7. 
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CHALLENGES AND RECOMMENDATIONS 

The following sections describe what the committee views as the most important aspects of the vali
dation process and challenges associated with them. The committee provides some recommendations for 
overcoming the challenges and for moving the validation process forward to meet the needs of assessing 
novel test methods. 

Defining the Scope and Purpose of New Assays as an Essential Element 
in the Process of Validation and Acceptance 

Most of the existing guidance deals with the technical aspects of the process for assay validation, but 
it is equally important to determine whether a new assay or test battery is meant to replace an existing one 
or is a novel approach that aims to improve decision-making and provide information that is critical but 
previously unavailable. 

Recommendation: A clear definition of the purpose of the new test should be considered before a 
specific validation process is defined. One must establish the fitness of the test for a particular decision 
context, select appropriate comparators (for example, a gold standard, mechanistic events, or biomarkers), 
and delineate the scope of the validation exercise to be commensurate with the proposed use. For exam
ple, can a new assay or test battery be used to characterize subchronic or chronic adverse health end 
points? Test performance characteristics (specificity, sensitivity, and coverage) might need to be adjusted, 
depending on the decision type and context. Ultimately, it should be clear whether the validation process 
is aimed at testing reliability, validity, or both. 

Enabling Fit-for-Purpose Validation 

The challenge of finding an appropriate comparator to enable fit-for-purpose validation of new test 
methods is considerable because disagreements about the quality of a gold standard or about whether 
there is one are common. If it is the case of validating a new assay as a replacement for an existing one, 
one must determine what gold standard is to be used as a comparator. Expert judgment will be needed to 
determine the validity of an existing method or model to be used as the comparator. If it is the case of val
idating a novel approach, the decision context for which the information can be used and the availability 
of other data need to be clearly defined. Statisticians have addressed the question of how to assess the va
lidity of test methods when there is no gold standard (Rutjes et al. 2007). Some of the methods involve 
correction of imperfect reference standards through the use of additional information or imputed values. 
Other methods construct a reference standard by using the results of multiple test methods. Each approach 
has merits for the purpose of replacing animal tests for toxicity. 

Two important issues on which there is still no consensus in the scientific community are evaluation 
of the validity of assays that are not intended as one-to-one replacements for in vivo toxicity assays and 
assessment of the concordance of data from assays that use cells or proteins of human origin and toxicity 
data that are virtually all derived from animal models. Judson et al. (2013) have provided ideas on how to 
validate assays that are intended to be used in a high-throughput context and to be interpreted only in the 
context of the results of many other assays that evaluate the same biological effect or pathway. Those ide
as need to be debated, modified, and tested. As to the concordance issue, it is likely that lack of concord
ance among species is due not to large differences in the function of highly conserved proteins, such as 
steroid receptors, but to differences in pharmacokinetics and metabolism. Selected investigation of inter
species concordance at a molecular level will prove or disprove that hypothesis. Data already exist in the 
literature that will allow comparisons, and the results will support decisions on what modifications, if any, 
are needed to accommodate species differences in validation efforts. 

Recommendation: Workshops or other mechanisms that can be used to develop consensus opinions 
among scientific experts on defining appropriate reference standards should be considered. Appropriate 
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disclaimers about author affiliations should be included in any reports or opinions that might result from 
the activities; conflicts of interest need to be carefully managed. 

Establishing the Utility and Domain of New Assays 

Another important aspect of validation is establishing the assay utility and clearly defining its do
main of applicability/ its capacity for chemical biotransformation, its ability to establish a concentration
response relationship, its mechanistic relevance, and the applicability of its results. It is necessary to en
sure that negative test results are not negative because of the lack of chemical metabolism, insufficient 
concentration tested, chemical volatility, chemical binding to plastic, or other factors. Determining the 
validity of negative results is an important challenging issue because the stakeholders inherently weigh 
positive data more than negative data or vice versa, depending on the decision context. Likewise, under
standing the mechanistic relevance of a result of a new assay is important; it should be clear whether the 
test is assessing an initiating event, a key event, or an adverse outcome. 

Recommendation: A description of the utility and domain of the test should be provided to inform 
the validation process and the ultimate use and interpretation of the data. There should be a clear state
ment concerning what a positive response or a negative (no) response from the assay means and what 
controls are appropriate or should be used. 

Establishing Performance Standards 

Data quality is a key determinant of acceptance of any test method. Assay performance guidelines 
that include quality-assurance metrics and quality control of day-to-day operation are well defined (for 
example, OECD Performance Based Test Guideline TG455), and it is widely recognized that such infor
mation needs to be documented. Performance standards4 are critical in a validation context and are a step 
toward regulatory acceptance, such as development into an OECD test guideline; however, performance 
standards are not equally well defined for all types of assays. For example, OECD provides performance 
standards primarily on estrogen-receptor activity and skin irritation, corrosion, and sensitization.5 

Recommendation: Performance standards should be developed for all types of assays that evaluate 
relevant adverse health outcomes with relevance being determined by a particular decision context. 

Another important part of testing assay performance is establishing reference-chemical lists. A vali
dation reference-chemical list for a number of end points to guide assay developers should help to miti
gate disagreements among stakeholders. Engagement of stakeholders-such as regulatory-agency staff, 
nongovernment organizations, and industry-in establishing the lists will contribute to acceptance of the 
data produced by assays that are validated using the lists. Some effort has been invested in addressing this 
challenge, and some valuable lists have been created (Brown 2002; Eskes et al. 2007; Casati et al. 2009; 
Pazos et al. 201 0; EC 20 16b ). However, there are few molecular targets for which there is a diverse set of 
specifically defined reference chemicals that can aid in determining both positive and negative perfor
mance of a test. 

3The domain of applicability defines what substances can be reliably tested in the assay. For example, can sub
stances that have limited solubility or are volatile be tested using the assay? 

4Perfonnance standards "provide a basis for evaluating the comparability of a proposed test method that is mech
anistically and fimctionally similar. Included are (1) essential test method components; (2) a minimum list of refer
ence chemicals selected from among the chemicals used to demonstrate the acceptable performance of the validated 
test method; and (3) the comparable levels of accuracy and reliability, based on what was obtained for the validated 
test method, that the proposed test method should demonstrate when evaluated using the minimum list of reference 
chemicals" (OECD 2005). 

5See http://www. oecd.org/ chemicalsafety /testing/performance-standards .htm. 
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Recommendation: Common chemical lists that are fit for different purposes and can evolve should 
be defined and used for validation of assays and models where possible. That will help the scientific 
community to establish specificity and potential redundancy among new assays. 

Validation or testing in multiple laboratories is one common element of current practice; however, it 
is recognized that ring trials6 take too long and are difficult to accomplish if the assays are proprietary, 
use ultrahigh throughput, or require specialized equipment or expertise. There might not be enough quali
fied laboratories in the world to perform the test. In the European Union, a network of vetted laboratories 
that can conduct validation reliably has been established as one way to address the challenge (European 
Union Network of Laboratories for the Validation of Alternative Methods). Judson et al. (2013) offered 
another possible solution and proposed performance-based validation: one validates the performance of a 
new test against the results of previously validated tests for the same end point (for example, a "gold
standard" test that might have undergone the formal OECD-like validation). Yet another alternative is to 
use a consensus resulting from multiple tests as a benchmark against which each test is evaluated and to 
assess variation about the consensus by using resampling techniques or meta-analysis (see Chapter 7). 
However, there is a real challenge in that many protocols that are used by contract research laboratories to 
conduct guideline tests are proprietary. Patlewicz et al. (2013) emphasize that any new validation ap
proaches need to allow proprietary tests. In one solution for validating proprietary tests, an outside body 
provides blinded samples to the testing laboratory and then independently evaluates the accuracy of the 
test. 

Recommendation: Government agencies should provide explicit incentives to academic, govern
ment, or commercial laboratories to participate in validation. 

An alternative (or additional consideration) to technical ring trials is peer review of the methods and 
of data from new assays. However, more accessible and consistently formatted data are needed for valida
tion through peer review. Data transparency and current agency-specific practices for releasing data to the 
public pose many challenges. For example, although ToxCast and Tox21 programs have established prac
tices for releasing data in various formats, other agencies in the United States and abroad are not as ad
vanced. Legal challenges involved in data access are many; not only might assays be proprietary but data 
from nonproprietary assays might be considered confidential business information. 

Recommendation: Data collected through coordinated validation or screening programs in govern
ment laboratories or under contract to government agencies, especially with respect to novel test methods, 
should be made publicly available as soon as possible, preferably through user-friendly Web-based dash
boards. If data are subject to human-subject protections or raise privacy concerns, appropriate measures 
should be taken to de-identify the information that is being released. 

Establishing Clear Reporting Standards for Assay Results and Testing Conditions 

It is widely recognized that the level of detail on methods and experimental conditions reported in 
scientific publications can be limited by manuscript length restrictions and other factors. It is critical, 
however, that sufficient information be included in the documentation of assay- or model-validation exer
cises. It might appear to assay or model developers that some details are obvious and not needed in the 
documentation, but reproducibility and validity of results might be critically affected by the omission or 
incompleteness of information. Results might also be misinterpreted in application if incorrect inferences 
are drawn. 

Recommendation: Government agencies and organizations involved in assay and model validation 
should develop clear guidance documents and training materials to support validation, such as training 
materials that cover various technical aspects of good in vitro method development and practices and 

6In a ring trial, a given assay is tested in established laboratories to determine its reliability. 
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cover reporting of methods. All technical aspects of the assay-such as number of cells; media, serum, or 
additives used; incubation length; readout description; equipment needed; and positive and negative con
trols-should be described as completely as possible and with the degree of detail needed for replication. 
The committee acknowledges that for proprietary reasons some information might need to be withheld, 
but best practice should include disclosure of the nature of and reason for withholding information. 

Recommendation: Because the chemical or particle concentrations can be different from the admin
istered (nominal or assumed) concentrations, depending on the chemical or particle properties (such as 
partitioning coefficients and metabolic rates) and the assay system (test materials), efforts should be made 
to quantify the concentrations in the test system that correspond with the response in the assays either 
through measurement or through mass-balance model estimation. 

Establishing Clear Guidelines for Evaluating Data Integration and 
Computational Predictive Modeling in a Common Framework 

In the 21st century toxicity-testing paradigm, the results of particular assays are likely to be integrat
ed with data from other sources to obtain the most confident assessment of risk possible. Such integration 
is the topic of Chapter 7. In anticipation of that chapter, the committee addresses performance issues 
around models here. 

The integrated analysis of data from multiple sources will be increasingly required for making regu
latory decisions, and the collective use of these data can be viewed as a new, comprehensive "assay." 
However, the multiple aspects of an integrated decision process present challenges in reliability and eval
uation. The framework underlying integrated approaches to testing and assessment (OECD 2008) pro
vides one example of a structured strategy for combining information for hazard identification and as
sessment. Here, the focus is on the quality and reliability of the computational aspects of data integration, 
which are often used in concert with traditional assays. Many of the validation principles of relevance and 
reliability that were developed for quantitative structure-activity relationship (QSAR) models by OECD 
(2007) apply to any statistical and integrated model (see Chapter 7 for further discussion). The OECD 
principles for QSAR model development call for (a) a defined end point, (b) an unambiguous algorithm, 
(c) a defined domain of (chemical) applicability, (d) measures of goodness of fit, robustness, and predic
tivity, and ideally (e) a mechanistic interpretation. Items (b) and (d) often pose the greatest challenge for 
QSAR or any statistical model, in that complicated modeling schemes are often difficult to reproduce pre
cisely. It has also been recognized and confirmed through systematic reviews of external validation stud
ies of multivariable prediction models that most studies report key details poorly and lack clarity on 
whether validation was truly external to the information on which the model was based (Collins et al. 
2014). Recent efforts by the Transparent Reporting of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis (TRIPOD) initiative resulted in recommendations for the reporting of studies that 
develop, validate, or update a prediction model, whether for diagnostic or prognostic purposes (Collins et 
al. 2015). 

Integrated assessment strategies can also benefit from redundancies and weighting of similar assays 
because a single in vitro assay will probably not provide a "perfect" result. Even assays that are similar 
mechanistically will likely have some degree of discordance because biological processes are complex, 
and some test chemicals might be unsuitable for certain assays. In addition, many environmental chemi
cals are likely to have low potency. As a result, there will be variation from assay to assay in what would 
be considered a positive response. Multiple assays for critical targets are likely to be needed and can be 
combined by using computational models (Browne et al. 2015). Any weighting scheme that is data
driven should be carefully cross-validated to avoid optimistic or over-fitted final schemes. 

As noted, data from assays might be combined with other lines of data to guide decision-making, 
and issues of documentation and transparency that arise when assay data are combined are similar to 
those involved when data from a single assay are used. 

Recommendation: Technical aspects of a statistical predictive model should be described with 
enough detail for all major steps to be independently reproduced and to ensure the utility and reliability of 
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the predictive models. Statistical predictive models often result in implicit weighting schemes for various 
features, such as chemical descriptors in QSAR models. Where possible, the final features used and rela
tive model contributions should be published to open the "black box" for future investigators. 

Recommendation: Weighting schemes for combining assays should be cross-validated if predictive 
performance or another criterion is driven by the current data and is used in developing a scheme. 

Recommendation: A culture of independent reproduction of statistical and integrative models should 
be fostered, ideally with reliability of models assessed by multiple computational groups working inde
pendently. 

Recommendation: Software tools and scripts should be validated by duplicative review by multiple 
investigators, and where possible software should be made available by open-source mechanisms for con
tinual quality control. 
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7 

Interpretation and Integration of Data and Evidence 
for Risk-Based Decision-Making 

Chapters 2-4 highlighted major advances in exposure science, toxicology, and epidemiology that 
will enable a better understanding of pathways, components, and mechanisms that contribute to disease. 
As described in those chapters, the new tools and the resulting data will improve the assessment of expo
sures that are associated with incremental increases in risk and will enhance the characterization of the 
spectrum of hazards that can be caused by chemicals. Chapter 5 described the new direction of risk as
sessment that is based on biological pathways and processes. That approach acknowledges the multifacto
rial and nonspecific nature of disease causation-that is, stressors from multiple sources can contribute to 
a single disease, and a single stressor can lead to multiple adverse outcomes. The new direction offers 
great promise for illuminating how various agents cause disease, but 21st century science-with its di
verse, complex, and potentially large datasets-poses challenges related to analysis, interpretation, and 
integration of the data that are used in risk assessment. For example, transparent, reliable, and vetted ap
proaches are needed to analyze toxicogenomic data to detect the signals that are relevant for risk assess
ment and to integrate the findings with results of traditional whole-animal assays and epidemiological 
studies. Approaches will also be needed to analyze and integrate different 21st century data streams and 
ultimately to use them as the basis of inferences about, for example, chemical hazard, dose-response rela
tionships, and groups that are at higher risk than the general population. Agencies have systems of prac
tice, guidelines, and default assumptions to support consistent and efficient approaches to risk assessment 
in the face of underlying uncertainties, but their practices will need to be updated to accommodate the 
new data. 

In this chapter, the committee offers some recommendations for improving the use of the new data 
in reaching conclusions for the purpose of decision-making. Steps in the process include analyzing the 
data to determine what new evidence has been generated (data-analysis step), combining new data with 
other datasets in integrated analyses (data-integration step), and synthesizing evidence from multiple 
sources, for example, for making causal inferences, characterizing exposures and dose-response relation
ships, and gauging uncertainty (evidence-integration step). The three steps should be distinguished from 
each other. The purpose of data analysis is to determine what has been learned from the new data, such as 
exposure data or results from individual toxicity assays. The new data might be combined with similar or 
complementary data in an integrative analysis, and the resulting evidence might then be integrated with 
prior evidence from other sources. Because the terminology in the various steps has varied among reports 
from agencies and organizations, the committee that prepared the present report adopts the concepts and 
terminology in Box 7-1. 

The committee begins by considering data interpretation when using the new science in risk assess
ment and next discusses some approaches for evaluating and integrating data and evidence for decision
making. The committee briefly discusses uncertainties associated with the new data and methods. The 
chapter concludes by describing some challenges and offering recommendations to address them. 

DATA INTERPRETATION AND KEY INFERENCES 

Interpreting data and drawing evidence-based inferences are essential elements in making risk-based 
decisions. Whether for establishing public-health protective limits for air-pollution concentrations or for 
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determining the safety of a food additive, the approach used to draw conclusions from data is a fundamen
tal issue for risk assessors and decision-makers. Drawing inferences about human-health risks that are 
based on a pathway approach can involve answering the following fundamental questions: 

C Can an identified pathway, alone or in combination with other pathways, when sufficiently per
turbed, increase the risk of an adverse outcome or disease in humans, particularly in sensitive or vulnera
ble individuals? 

C Do the available data-in vitro, in vivo, computational, and epidemiological data-support the 
judgment that the chemical or agent perturbs one or more pathways linked to an adverse outcome? 

C How does the response or pathway activation change with exposure? By how much does a chem
ical or agent exposure increase the risk of outcomes of interest? 

C Which populations are likely to be the most affected? Are some more susceptible because of co
exposures, pre-existing disease, or genetic susceptibility? Are exposures of the young or elderly of greater 
concern? 

To set the context for the discussion of inference and data interpretation to address the above ques
tions, the committee begins by considering a useful causal model of disease. As discussed in Chapter 5, 
the focus of toxicological research has shifted from observing apical responses to understanding biologi
cal processes or pathways that lead to the apical responses or disease. There is also the recognition that a 
single adverse outcome might result from multiple mechanisms, which can have multiple components 
(see Figure 5-1). The 21st century tools, which can be used to determine the degree to which exposures 
perturb pathways or activate mechanisms, facilitate a new direction in risk assessment that acknowledges 
the multifactorial nature of disease. 

One way in which to consider the multifactorial nature of disease is to use the sufficient-component
cause model (Rothman 1976; Rothman and Greenland 2005). The sufficient-component-cause model is 
an extension of the counterfactual notion1 and considers sets of actions, events, or states of nature that 
together lead to the outcome under consideration. The model provides a way to account for multiple fac
tors that can combine to result in disease in an individual or population. It addresses the question, What 
are the various events that might have caused a particular effect? For example, a house caught fire be
cause of a constellation of events-fire in the fireplace, wooden house, strong wind, and alarm not func
tioning-that together formed a sufficient causal complex, but no component was sufficient in itself 
(Mackie 1980). The model leads to the designation of causes or events as necessary, sufficient, or neither. 

BOX 7-1 Data Analysis and Integration Terminology Used in This Report 

Data: the quantitative or qualitative values generated by a measurement process or modeling. 

Evidence: the accumulated body of knowledge on a particular topic. 

Data analysis: the application of mathematical and statistical techniques to a dataset to investigate hy
potheses, perform estimation, and assess the evidence. 

Data integration: analytical processes that combine data from multiple sources. 

Evidence integration: the consideration, whether qualitative or quantitative, of evidence from multiple 
sources. 

Causal inference: the evaluation of evidence from all relevant sources to judge whether an association is 
causal. 

1The counterfactual is the state that is counter to the facts; for example, what would the risk of lung cancer have 
been if cigarette-smoking did not exist? 
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Figure 7-l illustrates the sufficient-component-cause concept and shows that the same outcome can 
result from more than one causal complex or mechanism; each "pie" has multiple components and gener
ally involves the joint action of multiple components. Although most components are neither necessary 
(contained in every pie) nor sufficient (single-component-cause pie) to produce outcomes or diseases, the 
removal of any one component will prevent some outcomes. If the component is part of a common com
plex or part of most complexes, removing it would be expected to result in prevention of a substantial 
amount of disease or possibly of all disease (IOM 2008). It is important to note that not every component 
in a complex has to be known or removed to prevent cases of disease. And exposures to each component 
of a pie do not have to occur at the same time or in the same space, depending on the nature of the dis
ease-producing process. Relevant exposures might accumulate over the life span or occur during a critical 
age window. Thus, multiple exposures (chemical and nonchemical) throughout the life span might affect 
multiple components in multiple mechanisms. Moreover, variability in the exposures received by the 
population and in underlying susceptibility and the multifactorial nature of chronic disease imply that 
multiple mechanisms can contribute to the disease burden in a population. 

The definitions of component, mechanism, and pathway are the same as those provided in Chapter 5 
in the discussion of the new direction in risk assessment. Box 7-2 provides the definitions in the context 
of the sufficient-component-cause model and is a reminder of the general definitions provided in Chapter 
l. Given Figure 7-l and Box 7-2, a mechanism of a disease will typically involve more than one compo
nent or pathway; multiple pathways will likely be involved in the production of disease. 

FIGURE 7-1 Multifactorial nature of disease illustrated by the sufficient-component-cause model in which various 
overall mechanisms (1, II, and III) of a disease are represented as causal pies of various components (A-J). 

BOX 7-2 Definitions of Component, Mechanism, and Pathway for This Report 

Component In the sufficient-component-cause model, a biological factor, event, or condition that when 
present with other components produces a disease or other adverse health outcome. 

Mechanism: Generally, a detailed description of the process by which an agent causes an effect. In the 
sufficient-component-cause model, the committee considers mechanisms to be comprised of compo
nents that cause disease or other adverse health outcome when they co-occur. 

Pathway: The sequence of events or network of biological processes that make up mechanisms. In ap
plying the sufficient-component-cause model, the committee considers pathways to be components of 
mechanisms. 

140 Prepublication Copy 

ED_001449_00000002 



Interpretation and Integration of Data and Evidence for Risk-Based Decision-Making 

The sufficient-component-cause model is a useful construct for considering methods for interpreting 
data and drawing inferences for risk assessment on the basis of 21st century data. It can be used to inter
pret mechanistic data for addressing the four critical questions above. And it is useful for considering 
whether a mechanism is complete (that is, whether all the necessary components are present or activated 
sufficiently to produce disease) and for considering the degree to which elimination or suppression of one 
component might be preventive. 

Identifying Components, Mechanisms, and Pathways That Contribute to Disease 

Research on the causes of cancer provides a concrete example of the uses of the multifactorial dis
ease concept and consideration of upstream biological characteristics. Ten characteristics of carcinogens 
have been proposed (Smith et al. 2016; IARC 2015) on the basis of mechanisms associated with chemi
cals that are known to cause cancer in humans (see Table 7-1). The International Agency for Research on 
Cancer (IARC) is using the characteristics as a way to organize mechanistic data relevant to agent
specific evaluations of carcinogenicity (IARC 2016a). The committee notes that key characteristics for 
other hazards, such as cardiovascular and reproductive toxicity, could be developed as a guide for evalu
ating the relationship between perturbations observed in assays, their potential to pose a hazard, and their 
contribution to risk. 

TABLE 7-1 Characteristics of Carcinogens 
Characteristic a 

Is electrophilic or can be metabolically activated 

Is genotoxic 

Alters DNA repair or causes genomic instability 

Induces epigenetic alterations 

Induces oxidative stress 

Induces chronic inflammation 

Is immunosuppressive 

Modulates receptor-mediated effects 

Causes immortalization 

Example of Relevant Evidence 

Parent compound or metabolite with an electrophilic structure 
(e.g., epoxide or quinone), formation of DNA and protein 
adducts. 

DNA damage (DNA-strand breaks, DNA-protein crosslinks, or 
unscheduled DNA synthesis), intercalation, gene mutations, 
cytogenetic changes (e.g., chromosome aberrations or 
micronuclei). 

Alterations of DNA replication or repair (e.g., topoisomerase II, 
base-excision, or double-strand break repair) 

DNA methylation, histone modification, microRNA expression 

Oxygen radicals, oxidative stress, oxidative damage to 
macromolecules (e.g., DNA or lipids) 

Increased white blood cells, myeloperoxidase activity, altered 
cytokine, or chemokine production 

Decreased immunosurveillance, immune-system dysfunction 

Receptor activation or inactivation (e.g., ER, PP AR, AhR) or 
modulation of endogenous ligands (including hormones) 

Inhibition of senescence, cell transformation 

Alters cell proliferation, cell death, or nutrient supply Increased proliferation, decreased apoptosis, changes in growth 
factors, energetics and signaling pathways related to cellular 
replication or cell cycle 

a Any characteristic could interact with any other (such as oxidative stress, DNA damage, and chronic inflammation), and a com
bination provides stronger evidence of a cancer mechanism than one would alone. 
Sources: Smith et al. 2016; IARC 2016. 
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The IARC characteristics include components and pathways that can contribute to a cancer. For ex
ample, "modulates receptor-meditated effects" includes activation of the aryl hydrocarbon receptor, 
which can initiate downstream events, many of which are linked to cancer, such as thyroid-hormone in
duction, xenobiotic metabolism, pro-inflammatory response, and altered cell-cycle control. Ones that are 
linked often fall under other IARC characteristics-for example, "cell-cycle control" falls under "alters 
cell proliferation"-and therefore are components of other characteristics. At the molecular level, some 
specific pathways that are ascribed to particular cancers (for example, the "chromosome unstable path
way" for pancreatic cancer) and fall within the IARC characteristics of carcinogens have been curated in 
the Kyoto Encyclopedia of Genes and Genomes 2 databases. 

One challenge is to evaluate whether a component or specific biological pathway contributes to a 
particular adverse outcome or disease. The challenge is not trivial given that inferences must be drawn 
from evidence that is far upstream of the apical outcome. The ability to identify the contributions of vari
ous components and pathway perturbations to disease and to understand the importance of changes in 
them can be critical to 21st century risk-based decision-making. However, the need for such an under
standing will be specific to the decision context. In some contexts, the lack of any observable effect on 
biological processes in adequate testing at levels much above those associated with any human exposure 
might be sufficient; thus, there is not always the need to associate biological processes directly with po
tential human health effects. In other cases, it will be critical to understand whether a pathway contributes 
to disease, for example, in conducting a formal hazard identification or in deciding which whole-animal 
assays should be used when a chemical is highly ranked in a priority-setting exercise for further testing. 

The committee proposes a possible starting point for linking components, pathways, and, more gen
erally, mechanisms to a particular disease or other adverse outcome. The question is whether the compo
nents or pathways and other contributing factors cause the disease. The committee draws on and adapts a 
causal-inference approach to guide the evaluation of the new types of data. Causal inference refers to the 
process of judging whether evidence is sufficient to conclude that there is a causal relationship between a 
putative cause (such as a pathway perturbation) and an effect of interest (such as an adverse outcome). 
The causal guidelines that were developed by Bradford Hill (1965) and by the committee that wrote the 
1964 surgeon general's report on smoking and health (DHEW 1964) have proved particularly useful for 
interpreting epidemiological findings in the context of experimental and mechanistic evidence. Those 
guidelines have been proposed by others for evaluating adverse-outcome pathways (OECD 2013). Box 7-
3 presents the Hill-surgeon general guidelines and suggests how they can be used to evaluate causal link
ages between health effects and components, pathways, and mechanisms. 

Only one element of the guidelines, that cause precedes effect (temporality), is necessary, although 
not sufficient. The remaining elements are intended to guide evaluation of a particular body of observa
tional evidence (consistency and strength of association) and to assess the alignment of that evidence with 
other types of evidence (coherence). The guidelines were not intended to be applied in an algorithmic or 
check-list fashion, and operationalizing the guidelines for various applications has not been done (for ex
ample, defining how many studies are needed to achieve consistency). Use of the guidelines inherently 
acknowledges the inevitable gaps and uncertainties in the data considered and the need for expert judg
ment for synthesis. Guidance and best practices should evolve with increased experience in linking path
ways, components, and mechanisms to health effects. 

Other approaches have been proposed to link outcomes to pathways or mechanisms. The adverse
outcome-pathway and network approaches represent efforts to map pathways that are associated with var
ious outcomes (see, for example, Knapen et al. 2015), and they are based on general guidance (OECD 
2013) similar to that described above. A complementary approach that deserves consideration is the meet
in-the-middle concept described in Chapter 4, in which one tries to link the biomarkers of exposure and 
early effect with the biomarkers of intermediate effect and outcome (see Figure 4-1 ). Different scientific 
approaches-traditional epidemiology at the population level, traditional toxicology at the organism level, 

2See http://www. genome .jp/kegg/ disease/. 

142 Prepublication Copy 

ED_001449_00000002 



Interpretation and Integration of Data and Evidence for Risk-Based Decision-Making 

and 21st century tools at the mechanistic level-will be used to address the challenge of linking effects 
with pathways or mechanisms. The multiple data streams combined with expert-judgement-based sys
tems for causal inference (see Box 7-3; DHEW 1964; EPA 2005; IARC 2006; EPA 2015) will probably 
serve as bridges between effects seen in assay systems and those observed in animal models or in studies 
of human disease. Expert judgments should ultimately involve assessments by appropriate multidiscipli
nary groups of experts, whether external to or in an agency. 

BOX 7-3 Causal Guidelines for Evaluating Associations of 
Health Effects and Components, Pathways, and Mechanisms 

Temporality: Interpretation of evidence on temporality is essential for causal inference: cause must come 
before effect. Assessment of temporality might be complicated by uncertainty because the full sequence 
of events that leads to health effects is typically not known, and the suite of possible pathways or compo
nents involved in the mechanism is rarely completely understood. 

Strength of association: The size of an effect related to the exposure in question can be important in iden
tifying causality, although a strong signal in single or multiple assays is not a prerequisite for concluding 
that a true causal association exists. Nonetheless, strong associations of pathway-perturbation measures 
(such as thyroid-hormone status) with outcome (such as IQ deficit) weigh against other factors that might 
have led to the association. 

Consistency: In the original causal-inference guidelines, consistency referred to the reproducibility of a 
finding, that is, whether findings from multiple observational studies conducted by different investigators in 
different populations were comparable. Replication is the basis for scientific progress, and replication in 
multiple studies increases confidence in the new findings. Another consideration of consistency in the 
context of 21st century data is related to outcomes that have been linked to suites of chemicals tested in 
assays that evaluate the same perturbations. Do chemicals that affect similar pathways and mechanisms 
lead to related outcomes and provide consistent results? Can differences in outcome be explained by 
population or context differences? Variability in assay performance and in domain applicability can result 
in inconsistent results that do not necessarily exclude the possibility of a causal relationship. 

Plausibility: The question here is whether activation of a proposed mechanism or perturbation of a path
way can be plausibly linked to a health effect. Is the association consistent with what is known generally 
about the chemicals or conditions that perturb various pathways and the outcome of concern? The con
cept of meet-in-the-middle that was described in Chapter 4 is useful in addressing this question. How are 
the data related to what has been observed in human populations (if studied) regarding some intermedi
ate biomarker that in turn predicts the probability of disease? A cautionary note in incorporating that crite
rion into guidelines is that plausibility is intrinsically grounded in the state of knowledge, and mechanisms 
that lead to health effects might act in ways that reside outside of current biological understanding. 

Specificity: Specificity-generally interpreted as a singular relationship between an exposure and a dis
ease-is often set aside. For example, tobacco smoke, a complex mixture, causes multiple malignancies, 
cardiovascular diseases, and respiratory diseases, and these conditions have other causes. With the 
powerful 21st century tools, the specificity could be explored by answering this question: Does the inter
ference or blocking of a pathway (for example, by using knockout mice) block or otherwise change the 
occurrence of the outcome? 

Coherence: Coherence, an element of plausibility, generally refers to the complementarity of different 
lines of evidence of cause and effect. With 21st century tools, coherence acquires a new dimension. Ver
tical coherence would be related to consistency over several levels of biological organization; for example, 
one might consider the effect of an inhibitor of histone deacetylation at different levels of organization. 
Horizontal coherence would be related to the presence of more than one effect at the same level of or
ganization; for example, one might consider the increased rate of apoptosis and the decreased prolifera
tive rate at the cellular level in the case of inhibition of histone deacetylation. 
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Linking Agents to Pathway Perturbations 

For drawing conclusions about whether a substance contributes to disease by perturbing various 
pathways or activating some mechanism, the committee finds the practice of IARC to be a reasonable 
approach. In evaluating whether an agent has one or more of the 10 characteristics of carcinogens noted 
above, IARC (2016) conducts a broad, systematic search of the peer-reviewed in vitro and in vivo data on 
humans and experimental systems for each of the 10 characteristics and organizes the specific mechanis
tic evidence by these characteristics. That approach avoids a narrow focus on specific pathways and hy
potheses and provides for a broad, holistic consideration of the mechanistic evidence (Smith et al. 2016). 
IARC rates the evidence on a given characteristic as "strong," "moderate," or "weak" or indicates the lack 
of substantial data to support an evaluation. The evaluations are incorporated into the overall determina
tions on the carcinogenicity of a chemical. More recently, after providing the evidence on each of the 10 
characteristics, IARC summarized the findings from the Tox21 and ToxCast high-throughput screening 
programs related to the 10 characteristics with the caveat that "the metabolic capacity of the cell-based 
assays is variable, and generally limited" (IARC 2015, 2016). 

Integrative approaches are being developed to evaluate high-throughput data in the Tox21 and Tox
Cast databases for the activity of a chemical in pathways associated with toxicity. Qualitative and quanti
tative approaches for scoring pathway activity have been applied. For example, scoring systems have 
been developed for "gene sets" of assays that are directed at activity in receptor-activated pathways, such 
as pathways involving androgen, estrogen, thyroid-hormone, aromatase, aryl-hydrocarbon, and peroxi
some proliferator-activated receptors (Judson et al. 2010; Martinet al. 2010, 2011; EPA 2014) and for 
"bioactivity sets" that are directed at activity in other general pathways, such as acute inflammation, 
chronic inflammation, immune response, tissue remodeling, and vascular biology (Kleinstreuer et al. 
2014). Chemical mechanisms that are inferred from high-throughput findings do not always match the 
knowledge of how a chemical affects biological processes that is gained from in vivo and mechanistic 
studies (Silva et al. 2015; Pham et al. 2016). That discordance underscores the importance of a broad re
view in associating chemicals to pathways or mechanisms that contribute to health effects. Appendix B 
provides a case study for a relatively data-sparse chemical that appears to activate the estrogenicity path
way as shown in high-throughput assays; a read-across inference could be drawn by comparing the data
sparse chemical to chemicals in the same structural class that have been studied better. 

The causal-guidance topics provided in Box 7-3 can be adapted to guide expert judgments in estab
lishing causal links between chemical exposure and pathway perturbations on the basis of broad, system
atic consideration of the evidence from the published literature and government databases. Temporality 
often is not an issue in the context of experimental assays because the effects are measured after exposure. 
For epidemiological studies, temporality might be a critical consideration inasmuch as biological speci
mens that are used to assess exposure might have been collected at times of uncertain relevance to the 
underlying disease pathogenesis and biomarkers of effect, and the development of disease might influence 
exposure patterns. Regarding strength of outcome in the context ofTox21 data, strong responses in multi
ple assays that are designed to evaluate a specific pathway or mechanism would provide greater confi
dence that the tested chemical has the potential to perturb the pathway or activate the mechanism. As
sessment of the relative potency of test chemicals in activating a mechanism or perturb a pathway will be 
informed by running assays with carefully selected and vetted positive and negative reference chemicals 
that have known in vivo effects. As discussed further below, methods or technologies that produce enor
mous datasets pose special challenges. Procedures to sift through the data to determine signals of im
portance are needed. As the scientific community develops experience, quantitative criteria and proce
dures that reflect best practices can be incorporated into guidelines for judging the significance of signals 
from such data. Regarding consistency, consideration should be given to findings from the same or simi
lar assays in the published literature and government programs and from assays that use appropriately 
selected reference chemicals. Caution should be exercised in interpreting consistency of results from mul
tiple assays and chemical space because assays might vary in the extent to which they are "fit for pur
pose" (see Chapter 6). Regarding plausibility and coherence, there are considerations regarding consisten-
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cy between what is known generally about a chemical or structurally similar chemicals and the outcome 
of concern and between findings from different types of assays and in different levels of biological organ
ization. In considering the possible applicability of practices adapted from the Bradford Hill guidelines 
for evaluating the evidence of pathway perturbations by chemicals, the committee emphasizes that the 
guidelines are not intended to be applied as a checklist. 

Assessing Dose-Response Relationships 

Chapter 5 and the case studies described in the appendixes show how some of the various 21st cen
tury data might be used in understanding dose-response relationships for developing a quantitative char
acterization of risks posed by different exposures. As noted in Chapter 5, it is not necessary to know all 
the pathways or components involved in a particular disease for one to begin to apply the new tools in 
risk assessment, and a number of types of analyses that involve dose-response considerations can incor
porate the new data. Table 7-2 lists some of those analyses and illustrates the type of inferences or as
sumptions that would typically be required in them. 

TABLE 7-2 Examples oflnferences or Assumptions Needed to Use 21st Century Data 
in Various Analyses 
Analysis That Involves Dose-Response 
Considerations 

Read-across: health reference values 
derived from structurally or biologically 
similar anchor chemicals 

Toxicogenomic screening to determine 
whether environmental exposures are of 
negligible concern or otherwise 

Extrapolation of effect or benchmark doses 
in vitro to human exposures to establish 
health reference valuesa 

Priority-setting of chemicals for testing 
on the basis of in vitro screens 

Clarification of low end of dose-response 
curve (for rich datasets) 

Construction of dose-response curve 
from population variability characteristics 
(NRC 2009) 

Selection of method or model for 
dose-response characterization 

Examples of Inferences or Assumptions Needed 

- Sufficiency of chemical similarities for read-across on the basis, for example, 
of biological, chemical-structure, metabolic, or mechanistic similarities 

- Comparison of chemical activity on the basis, for example, of 
pharmacokinetics and biological activity in assays 

- Generalizability of results to susceptible and general human populations 
- Consequence or importance of toxicogenomic effects seen at exposures 

greater than environmental exposures 
- Sufficiency of procedure to filter and analyze genomics data; assumptions as 

to which pathway-related indicators are important 

- Sufficiency of understanding about human pharmacokinetic and 
pharmacodynamic variability 

- Generalizability of results to susceptible and general human populations. 

- Sufficiency of metabolic capacity and biological coverage of cell systems in 
domains of interest for chemicals that are being ranked 

- Adequacy of pharmacokinetic adjustments in the context of human exposures 
and population variability 

- Sufficiency of understanding of mechanisms 
- Extent to which sensitive elements of involved pathways have been evaluated 

by mechanistic studies 

- Sources of pharmacokinetic and pharmacodynamic variability sufficiently 
captured and integrated into a population-variability characterization 

- Choice of a low-dose linear model or a low-dose non-linear or threshold 
model on the basis of consideration of mechanisms, population vulnerability, 
and background exposures (NRC 2009) 

aFor most outcomes, it is not possible simply to replace a value derived from a whole-animal assay with a value de
rived from an in vitro assay. The lack of understanding of all the pathways involved makes such direct replacement 
premature. The lack of metabolic capacity in cell systems and the limitations of biological coverage pose further 
challenges to the free-standing use of in vitro approaches for derivation of guidance values in most contexts (see 
Chapters 3 and 5). 
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Given that most diseases that are the focus of risk assessment have a multifactorial etiology, it is 
recognized that some disease components result from endogenous processes or are acquired by the human 
experience, such as background health conditions, co-occurring chemical exposures, food and nutrition, 
and psychosocial stressors (NRC 2009). Those additional components might be independent of an envi
ronmental stressor under study but nonetheless influence and contribute to the risk and incidence of dis
ease (NRC 2009; Morello-Frosch et al. 2011). They also can increase the uncertainty and complexity of 
dose-response relationships-a topic discussed at length in the NRC (2009) report Science and Deci
sions: Advancing Risk Assessment, and the reader is referred to that report for details on deriving dose
response relationships for apical outcomes by using mechanistic and other data. The 21st century tools 
provide the mechanistic data to support those deviations. 

The committee emphasizes the importance of being transparent, clear, and, to the greatest extent ap
propriate, consistent about the explicit and implicit biological assumptions that are used in data analysis, 
particularly dose-response analysis. Best practices will develop over time and should be incorporated into 
formal guidance to ensure the consistent and transparent use of procedures and assumptions in an agency. 
The development and vetting of such guidance through scientific peer-review and public-comment pro
cesses will support the best use of the new data in dose-response practices. The guidelines should address 
statistical and study-selection issues in addition to the assumptions that are used in the biological and 
physical sciences for analyzing such data. For example, studies that are used to provide the basis of the 
dose-response description should generally provide a better quantitative characterization of human dose
response relationships than the studies that were not selected. Some issues related to statistical analyses in 
the context of large datasets are considered below. Various dose-response issues presented in Table 7-2 
involve integration of information in and between data domains, and tools for such integration and the 
possible implicit biological assumptions needed for their use are discussed later in this chapter. 

Characterizing Human Variability and Sensitive Populations 

People differ in their responses to chemical exposures, and variability in exposure and response is a 
critical consideration in risk assessment. For example, protection of susceptible populations is a critical 
aim in many risk-mitigation strategies, such as the setting of National Ambient Air Quality Standards for 
criteria air pollutants under the Clean Air Act. Variability in response drives population-level dose
response relationships (NRC 2009), but characterizing variability is particularly challenging given the 
number of sources of variability in response related to such inherent factors as genetic makeups, life 
stage, and sex and such extrinsic factors as psychosocial stressors, nutrition, and exogenous chemical ex
posures. Genetic makeup has often been seen as having a major role in determining variability, but re
search indicates that it plays only a minor role in determining variability in response related to many dis
eases (Cui et al. 2016). Thus, in considering use and integration of 21st century science data, the weight 
given to data that reflect genetic variability needs to be considered in the context of the other sources of 
human variability. 

Figure 7-2 illustrates how a wide array of factors-each potentially varying in a population-can 
combine to affect the overall degree of interindividual variability in a population (Zeise et al. 20 13). Vari
ability is shown in the context of the source-to-outcome continuum that has been expanded and elaborated 
on in Chapters 2 and 3. As described in Chapter 2, environmental chemical exposure at particular concen
trations leads to an internal exposure that is modified by pharmacokinetic elements. As described in 
Chapter 3, internal exposure results in some molecular changes that progress in later steps to outcomes. 
Figure 7-2 shows how variability in other exposures and in biological factors can affect different points 
along the source-to-outcome pathway and lead to different outcomes in individuals. Modern exposure, 
toxicology and epidemiology tools-including biomarkers and measures of physiological status-can all 
provide indications of susceptibility status. The same indicators can be observed experimentally and used 
in models to help in drawing inferences about variability that are relevant to humans. 
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FIGURE 7-2 Determinants of variability in human response result from inherent and extrinsic factors that influence 
propagation of dose and responses along the source-to-outcome continuum. Source: Zeise et al. 2013. 

Chapter 2 describes pharmacokinetic models of various levels of complexity that can be used to 
evaluate human interindividual variability in an internal dose that results from a fixed external exposure. 
Chapter 3 describes relatively large panels of lymphoblastoid cell lines derived from genetically diverse 
human populations that can be used to examine the genetic basis of interindividual variability in a single 
pathway. The chapter also describes how genetically diverse panels of inbred mice strains can be used to 
explore variability and how various studies that use such strains have been able to identify genetic factors 
associated with liver injury from acetaminophen (Harrill et al. 2009) and tetrachloroethylene (Cichocki et 
al. 2016). The combination of such experimental systems with additional stressors can be used to study 
other aspects of variability. Chapter 4 covers epidemiological approaches used to observe variability in 
human populations. 

Data-driven variability characterizations have been recommended as a possible replacement for 
standard defaults used by agencies, in specific cases and in general. Data-driven variability factors can be 
considered in light of the guidance for departure from defaults provided in NRC (2009), the degree to 
which the full array of sources of variability have been adequately explored, and the reliability of the evi
dence integration. The modified causal guidance provided in Box 7-3 can be used to assess the emerging 
qualitative and quantitative evidence on human variability, and the analysis and integration approaches 
described later in the chapter are also relevant here. 

APPROACHES FOR EVALUATING AND INTEGRATING DATA AND EVIDENCE 

The volume and complexity of 21st century data pose many challenges in analyzing them and inte
grating them with data from other (traditional) sources. As noted earlier, the necessary first step is the 
analysis of the toxicity-assay results and exposure data. That stage of analysis is followed by the data
integration step in which the new data are combined with other datasets (the combination of similar or 
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complementary data in an integrative analysis). The results of such analyses might then be integrated with 
prior evidence from other sources (evidence integration). The discussion below first addresses the issues 
associated with analyzing individual datasets and studies-that is, evaluating individual study quality and 
tackling the challenge of big data. Next, approaches for interpreting and integrating data from various 
studies, datasets, and data streams are described, and some suggestions are provided for their use with 
21st century data. The committee notes that recent reports of the National Research Council and the Na
tional Academies of Sciences, Engineering, and Medicine have dealt extensively with the issues of data 
and evidence integration (see, for example, NRC 2014 and National Academies of Sciences, Engineering, 
and Medicine 2015). The committee notes that although formal methods receive emphasis below, find
ings could be sufficiently compelling without the use of complex analytical and integrative methods. In 
such cases, decisions might be made on direct examination of the findings. 

Analyzing Individual Datasets and Studies 

Evaluating Individual Studies 

Several NRC reports have emphasized the need to use standardized or systematic procedures for 
evaluating individual studies and described some approaches for evaluating risk of bias and study quality 
(see, for example, NRC 2011, Chapter 7; NRC 2014, Chapter 5). Those reports, however, acknowledged 
the need to develop methods and tools for evaluating risk of bias in environmental epidemiology, animal, 
and mechanistic studies. Since release of those reports, approaches for assessing risk of bias in environ
mental epidemiology and animal studies have been advanced (Rooney et al. 2014; Woodruff and Sutton 
2014; NTP 2015a). Approaches for assessing risk of bias in mechanistic studies, however, are still not 
well developed, and there are no established best practices specifically for high-throughput data. The 
committee emphasizes the need to develop best practices for systematically evaluating 21st century data 
and for ensuring transparency when a study or -omics dataset is excluded from analysis. There is also a 
need for data-visualization tools to aid in interpreting and communicating findings. The committee notes 
that evaluating the quality of an individual study is a step in systematic review, discussed below. 

Tackling the Challenge of Big Data 

The emerging technologies of 21st century science that generate large and diverse datasets provide 
many opportunities for improving exposure and toxicity assessment, but they pose some substantial ana
lytical challenges, such as how to analyze data in ways that will identify valid and useful patterns and that 
limit the potential for misleading and expensive false-positive and false-negative findings. Although the 
statistical analysis and management of such data are topics of active research, development, and discus
sion, the committee offers in Box 7-4 some practical advice regarding several statistical issues that arise 
in analyzing large datasets or evaluating studies that report such analyses. 

To illustrate one of the statistical issues, the winner's curse correction, consider an in vitro assay that 
is used to measure chemicals in a class for a particular activity, such as binding to the estrogen receptor 
alpha. The application might call for identifying the least or most potent chemical or the range of activity 
for the class. Figure 7-3 shows how a group of chemicals can appear to differ considerably in an assay
by over 2 orders of magnitude in this example. However, if the results of the assay are measured with a 
comparable degree of error, conclusions can be misleading. After correction for error by using a simple 
Bayesian approach with a hierarchical model for variation of true effects, chemicals in the group differ 
from one another in potency by less than 1 order of magnitude, and the chemical that originally was ob
served to have the highest potency in the assay moves to the second position. 
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BOX 7-4 Development of Best Statistical Practices for Analyzing Large Toxicity Datasets 

The following topics are applicable to large datasets, such as activity measurements from high
throughput screening (HTS) assays for chemicals. Some are applicable for analyzing associations of 
single nucleotide polymorphisms (SNPs) with disease or exposure conditions or for analyzing dose
response relationships of gene expression in HTS studies. 

Multiple comparisons: The total number of statistical tests performed and the false-negative and 
false-positive (error) control procedures should be clearly stated. Error-control procedures include 
ones that control the family-wise error rate, the false-discovery rate, or a Bayesian posterior probabil
ity of the null hypothesis (Efron 2011; Gelman et al. 2012). Overly conservative approaches for con
trolling family-wise error, such as Bonferroni control, can hide important biological signals. 

Filtering: Assays or chemicals might be excluded before comparisons are made. For example, as
says might be dropped if they show no activity for any chemical, lack statistical power to detect an 
association, or are otherwise uninformative. Care should be taken to avoid bias in the assessment of 
an association when the associations are themselves used for filtering 

Covariate correction: Correction for covariates unrelated to the primary hypotheses improves statistical 
power and reduces the potential for confounding. For high-throughput platforms, the data are often rich 
enough to provide evidence of latent variation due to technical or batch artifacts (Leek et al. 2007); fail
ure to account for this variation can result in spurious findings, often dramatically (Leek et al. 201 0). 
Known confounders can be controlled for by regression or stratified analysis, and unobserved con
founders can be controlled for by latent or surrogate variable analysis. 

Feature or pathway enrichment: These methods attempt to identify features that together have stronger 
or more biologically interpretable results than individual features alone. For example, collections of as
says for a receptor target associated with an in vivo end point can be grouped. Ideally, the group tests 
use methods to address the correlation in the data to control false-positive findings (Hosack et al. 2003; 
Gatti et al. 2010). 

Network and module analysis: Networks or modules of predictors or features might be identified by 
using correlation or co-expression analyses (Langfelder and Horvath 2008). The methods are still 
being developed to identify how networks change in response to a measured exposure or a toxicity 
end point. One approach is to derive a summary measure from the network and then to measure the 
correlation of the summary measure with the end point. 

Integration of hypothesis testing: When aggregating multiple assays or replicated studies, one might 
use meta-analysis or empirical Bayes approaches if the assays are on the same scale and are 
measuring the same quantities. Independent p values might be combined by using Fisher's com
bined p-value or other method (Zaykin et al. 2007) to test, for example, that a chemical has no effect 
on any of a large number of -omics outcomes. However, an integrated analysis of multiple separate 
datasets violates independence assumptions when some portions of the data are shared in conduct
ing analyses. For example, comparison of genome-wide association studies for two or more diseas
es might use the same set of controls (Wellcome Trust Case Control Consortium 2007), and this 
could bias the integrated analysis (Zaykin and Kozbur 201 0). 

Shrinkage and winner's curse correction: Measurement error can affect output from multiple assays 
or conditions in such a way that the measured outcome values are more varied than the underlying 
true variation. The same principle applies to multiple effect-size estimates; for example, in a genome
wide association study of numerous SNPs, the apparent association of the most significant SNPs 
with a trait or disease might tend to be greater than the true association. Correction by shrinkage 
techniques or by winner's curse correction methods will provide more realistic estimates. 
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FIGURE 7-3 Correction for assay measurement error. Left, observed values (circle) for 20 chemicals in an in vitro 
assay± 2 standard errors (error bar). Right, values corrected for measurement error. 

Another illustration is offered by the case study for 4-methylcyclohexanemethanol (MCHM, the 
chemical spilled into the Elk River in West Virginia) that is discussed in Appendix C. In addition to a 
number of in vitro and in vivo studies, the National Toxicology Program performed 5-day toxicogenomic 
studies in rats on MCHM and other chemicals spilled into the river. Initial findings of toxicogenomic sig
nals-referred to as "molecular biological processes" that were indicative of liver toxicity-were made at 
around 100 mg/kg, which was a dose just below the apical observations of liver toxicity at 300 and 500 
mg/kg, for example, for increased triglycerides (NTP 2015b). However, a refined analysis that sought to 
limit false discovery and maximize reproducibility (S. Auerbach, National Toxicology Program, personal 
commun., November l, 2016) found changes in measures of dose-related toxicogenomic activity
activity of at least five genes that are associated with, for example, cholesterol homeostasis by the liver
at doses lower by nearly a factor of 10 (median benchmark dose of l3 mg/kg-day; NTP 2016) than doses 
previously thought to be the lowest doses to show activity. The example illustrates the challenge of de
veloping approaches to evaluate toxicogenomic data that, while not excluding important biological sig
nals, address the issue of false positives. With the increasing generation and analysis of toxicogenomic 
data in animal experiments, the additional experience should facilitate the development of best practices. 
Similar considerations apply to the use of toxicogenomic data from in vitro and epidemiological studies. 

Aside from the statistical approaches used for data analysis, other considerations are involved in 
judging the quality and potential bias of studies that use 21st century data, particularly regarding applica
bility or generalizability of a study for addressing the question at hand. Such considerations raised in ear
lier chapters include the metabolic competence of in vitro assays, the nature of the cells used in in vitro 
assays, and the representativeness of the nominal dose in in vitro systems. 

Approaches for Integrating Information from Studies, Datasets, and Data Streams 

Systematic Review 

As defined by the Institute of Medicine (IOM 2011, p. 1), systematic review "is a scientific investi
gation that focuses on a specific question and uses explicit, prespecified scientific methods to identify, 
select, assess, and summarize the findings of similar but separate studies." Specifically, it is an approach 
that formulates an a priori question that specifies a population or participants (the exposed group under 
study), an exposure (the substance and exposure circumstance), a comparator (subjects who have lower 
exposures), and outcomes of interest; conducts a comprehensive literature search to identify all relevant 
articles; screens the literature according to prespecified exclusion and inclusion criteria; evaluates study 
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quality and study bias according to prespecified methods; and summarizes the results. The summary 
might or might not provide a quantitative estimate (see meta-analysis discussion below), and transparency 
is emphasized in the overall approach. Systematic review has been used extensively in the field of com
parative-effectiveness research in which one attempts to identify the best treatment option in the clinical 
setting. In that field, the systematic-review process is relatively mature (Silva et al. 2015); guidance is 
provided in the Cochrane handbook (Higgins and Green 2011). Although there are some challenges in 
using systematic review in risk assessment, such as formulating a sufficiently precise research question 
and obtaining access to primary data, its application in human health risk assessments is a rapidly devel
oping field in which frameworks (Rooney et al. 20 14; Woodruff and Sutton 20 14) and examples (Kuo et 
al. 2013; Lam et al. 2014; Chappell et al. 2016) are available. The report Review of EPA's Integrated Risk 
Information System (IRIS) Process (NRC 2014) provides an extensive discussion of systematic review as 
applied to the development ofiRIS assessments (hazard and dose-response assessments). As indicated in 
that report, systematic review integrates the data within one data stream (human, animal, or mechanistic), 
and other approaches are then used to integrate the collective body of evidence. As noted above, one chal
lenge for systematic reviews that address environmental risks to human health has been in developing 
methods to assess bias in mechanistic studies and their heterogeneity. Practical guidance for systematic 
review focused on human health risk has recently been developed (NTP 2015). 

Meta-Analysis 

Meta-analysis is a broad term that encompasses statistical methods used to combine data from simi
lar studies. Its goal is to combine effect estimates from similar studies into a single weighted estimate 
with a 95% confidence interval that reflects the pooled data. If there is heterogeneity among the results of 
different studies, another goal is to explore the reasons for the heterogeneity. Two models-the fixed
effect model and the random-effects model-are typically used to pool data from different studies; each 
model makes different assumptions about the nature of the studies that contributed the data and therefore 
uses different mechanisms for estimating the variance of the pooled effect. As noted in NRC (2014), "al
though meta-analytic methods have generated extensive discussion (see, for example, Berlin and 
Chalmers 1988; Dickersin 1992; Berlin and Antman 1994; Greenland 1994; Stram 1996; Stroup et al. 
2000; Higgins et al. 2009; Al Khalaf et al. 2011), they can be useful when there are similar studies on the 
same question." 

As one might expect, meta-analyses are often applied to epidemiological studies to assess hazard 
(for example, does the pooled relative risk differ significantly from 1.0?) or to characterize dose-response 
relationships (for example, relative risk per unit concentration). They have not seen much use for evaluat
ing animal datasets because of difficulty in assessing and identifying sources of heterogeneity of the data. 
Similarly, their application to 21st century data streams is expected to be uncommon given the heteroge
neity of the data and the need to integrate data from different types of measures even when evaluating the 
same mechanisms or pathways. 

Bayesian Approaches 

Bayesian methods provide a natural paradigm for integrating data from various sources while ac
commodating uncertainty. The method is based on the Bayes theorem and involves representing the state 
of knowledge about a variable or phenomenon, such as the slope of a dose-response curve or how people 
differ from one another in their ability to metabolize a chemical, as captured by a probability distribution. 
As further information is generated about the variable, the "prior" probability distribution is "updated" to 
a new "posterior" probability distribution that reflects the updated state of knowledge. 

Early applications of Bayesian approaches were by DuMouchel and Harris (1983) to evaluate the 
carcinogenicity of diesel exhaust by combining evidence from human, animal, and mechanistic studies, 
and by DuMouchel and Groer ( 1989) to estimate the rate of bone cancer caused by deposited plutonium 
from data on humans and dogs. Those examples involved strong assumptions about relevance and equiva-
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lence of different data streams (for example, human vs animal). Hierarchical, population Bayesian meth
ods have been used to integrate different lines of evidence on metabolism and its variability in risk as
sessments of tetrachloroethylene (Bois et al. 1996; OEHHA 2001) and trichloroethylene (EPA 2011; Chiu 
et al. 2014). Bayesian approaches have been used to estimate values of model parameters for physiologi
cally based pharmacokinetic models and to characterize uncertainty and variability in exposure estimates 
(Bois 1999, 2000; Liao et al. 2007; Wambaugh et al. 2013; Dong et al. 2016). They have also been ap
plied to fate and transport modeling of chemicals at contaminated sites, of natural estrogens from live
stock operations, and of bacteria from nonpoint sources (Thomsen et al. 2016) and have been shown to be 
broadly applicable for evidence integration (NRC 2014; Linkov et al. 2015). 

The starting point for a Bayesian analysis is the determination of a prior probability distribution that 
characterizes the uncertainty in the variable of interest (or hypothesis) before observation of new data. 
The prior might be elicited on the basis of general knowledge in the literature and the state of scientific 
knowledge in the field. The process of summarizing information into a prior probability distribution is 
referred to as prior elicitation. It can be difficult, particularly when little information is available, and it is 
inherently imperfect in many kinds of applications; there is no best way to obtain and summarize poten
tially disparate information from the literature and from related studies. Some examples of prior elicita
tion in environmental risk assessment are provided in Wolfson et al. (1996). 

Several strategies have been used to manage the uncertainty in prior elicitation. One involves choos
ing a prior that is vague. Vague priors can lead to posteriors that are erratic, including posterior densities 
that have many local bumps and might oscillate as data accumulates between widely divergent values. 
Gelman et al. (2008) provide some concrete examples of defining probability distributions with weakly 
informative priors. Another strategy is to estimate parameter values in a prior on the basis of data from 
related studies. For example, one might be studying a new chemical for which there is not much direct 
information on mechanism or exact dose-response shapes for different end points; however, there might 
be much to learn from a collection of the same type of data for similar chemicals. Learning from past data 
is a version of"empirical Bayes" and can be more easily justified than "subjective Bayes" methods articu
lated earlier. Potentially, a panel of experts could provide their own priors, which could be combined into 
a single prior (Albert et al. 2012). However, any one expert tends to be over confident about his or her 
knowledge and to choose a prior with a variance that is too smalL Methods for addressing the over confi
dence of experts and other deficiencies in expert elicitation are important to consider (NRC 1996, Chapter 
4; Morgan 20 14). Regardless of the method of elicitation, it is important to assess the plausibility of a se
lected prior and to conduct sensitivity analyses to understand changes in priors. 

Once the prior distribution has been defined, the prior can be updated with information in the likeli
hood function for each data source. Each time a data source is added, the prior is updated to obtain a pos
terior distribution that summarizes the new state of knowledge. The posterior distribution can then be 
used as a prior distribution in future analyses. Bayesian updating can thus be viewed as a natural method 
for synthesizing data from different sources. 

Sensitivity analysis provides a valuable approach to identify which data uncertainties are the most 
important in the Bayesian analyses. As noted by NRC (2007), sensitivity analysis can help to set priorities 
for collecting new data and contribute to a process for systematically managing uncertainties that can im
prove reliability. 

The development of general-purpose, robust, and interpretable Bayesian methods for 21st century 
data is an active field of research, although hybrid approaches that reduce dimensionality before applying 
the Bayesian paradigm for synthesis of evidence from different data sources are favored at this point for 
risk-assessment purposes. The committee provides an example of using Bayesian approaches in a high
dimensional setting in Appendix E. 

Guided Expert Judgment 

Guided expert judgment is a process that uses the experience and collective judgment of an expert 
panel to evaluate what is known on a topic, such as whether the overall evidence supports a hazard find-
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ing on a chemical (for example, whether a chemical is a carcinogen). Predetermined protocols for judging 
evidence generally guide the expert panel. The panel might be asked to judge whether the evidence falls 
into one of several broad categories, such as strong, moderate, or weak. Such approaches are used by the 
US Environmental Protection Agency (EPA) in its process for evaluating the evidence gathered for the 
Integrated Science Assessments for the evaluation ofNational Ambient Air Quality Standards for selected 
pollutants. Expert-judgment approaches are often criticized because they can lack transparency and re
producibility in that the processes used to synthesize evidence and the resulting judgments made by the 
experts might be obscured and because different groups of experts can come to different conclusions after 
reviewing the same data. Furthermore, because modern risk assessments increasingly involve complex, 
diverse, and large datasets, the use of a guided-expert-judgment approach can be challenging. 

The IARC monograph program (IARC 2006; Pearce et al. 2015) uses guided expert judgment for its 
causal assessment of carcinogenicity that integrates observational human studies, experimental animal 
data, and other biological data, such as in vitro assays that contribute mechanistic insights. For several 
agents on which there are few or no human data to assess carcinogenicity, complementary experimental 
animal data and mechanistic data have been used to support an overall conclusion that a chemical is car
cinogenic in humans. The carcinogenicity assessment of ethylene oxide (EO) for which studies in humans 
are limited by the use of small cohorts of exposed workers is one example. The high mutagenicity and 
genotoxicity of EO, clear evidence of such activity in humans, and the similarity of the damage induced 
in animals and humans led IARC working groups (IARC 1994, 2008, 2012) to classify it as a human car
cinogen (Group 1) in spite of the limited epidemiological evidence. The most recent review (IARC 20 12) 
noted that "There is strong evidence that the carcinogenicity of ethylene oxide, a direct-acting alkylating 
agent, operates by a genotoxic mechanism ... Ethylene oxide consistently acts as a mutagen and clastogen 
at all phylogenetic levels, it induces heritable translocations in the germ cells of exposed rodents, and a 
dose-related increase in the frequency of sister chromatid exchange, chromosomal aberrations and micro
nucleus formation in the lymphocytes of exposed workers." Box 7-5 provides details on the current IARC 
process. 

Some have advocated quantitative approaches to weighting evidence from different sources even if 
any such weighting approaches can be criticized. A fundamental challenge in evaluating such approaches 
is that there is often no gold-standard weighting scheme; that is, there are no consensus approaches that 
are recognized as state-of-the-practice for optimally weighting results obtained from observational epi
demiology, laboratory animal studies, in vitro assays, and computational systems for human health risk 
assessment. Within each of those lines of evidence are studies that vary widely in quality and relevance, 
and a priori weights established by experts on the basis of general characteristics (for example, animal vs 
human) fail to account for the scientific nuances. Experts differ as to the best weighting strategy, and 
formal decision-theory methods do not avoid the need for subjective choices and judgments. Thus, the 
committee declines to advance quantitative weighting schemes as an approach to integrating evidence 
from different sources. 

Weighting in some cases, however, might be useful in a given data stream or evidence class, such as 
data from high-throughput assays or in vivo assays with common end points. Weighting typically would 
follow principles based on statistics and expert judgment. For example, in the absence of additional in
formation, assays that are intended to interrogate the same pathway, mechanism, or end point and are on 
similar scales can be weighted by using the inverse of sampling variation; this is essentially the approach 
used in meta-analysis. Assays that evaluate the same end point can be weighted on the basis of prediction 
accuracy. 

Given the current practices, the committee recommends that guided expert judgment be the ap
proach used in the near term to integrate diverse data streams for drawing causal conclusions. Guided ex
pert judgment is not as easily applied to other elements of the risk-assessment process because of the va
riety of data types and the complexity of decision points in the analyses. Considerable expert review and 
consultation are recommended for development of guidance for those activities to be followed by expert 
scientific peer review of the final product. 
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BOX 7-5 Integrating and Evaluating Mechanistic Data in the 
International Agency for Research on Cancer 

Evaluation of mechanistic information in IARC begins with a systematic search of the mechanistic literature 
(IARC 2016b). The literature is screened for relevance and organized by mechanistic topic, guided by the 10 
key characteristics of carcinogens and data type (human or experimental systems and in vivo or in vitro). There 
is no expectation that most or all key characteristics are operative for any specific carcinogen. 

The working group evaluates data from relevant sources and pays special attention to data gaps and evi
dence that suggests that multiple mechanisms might be operating (IARC 2006). It evaluates evidence of 
changes in cell, tissue, or organ physiology after exposure, including alterations in inflammation, hyperplasia, 
and cell adhesion ability. The working group evaluates functional changes at the cellular level, such as shifts in 
the abundance of various components of key cellular machinery, increases or decreases in post-translational 
protein modifications, and effects on xenobiotic metabolism. The working group also evaluates modifications of 
molecular architecture (changes at the molecular level), including global DNA methylation, the formation of DNA 
adducts, and gene mutations. 

Mechanistic information obtained from in vitro and nonmammalian in vivo systems (such as prokaryotes, cell 
cultures, and lower eukaryotes) can strengthen the biological plausibility of links to cancer. In addition, high
throughput assays that measure the effects for a single end point, high-content assays that measure multiple 
end points for a single agent or mixture, and structure-activity relationship information can support consistency 
among study types, populations, and species. High-throughput assays, especially ones that have metabolic 
capacity and native cellular environments, can be useful in analyzing plausible mechanisms for chemical clas
ses, as can consistent changes among multiple genes in high-content assays, such as microarrays. 

The absence of an effect in narrowly created datasets (such as ones that use specific tissues or cell types) 
does not necessarily support a finding that there is no effect (IARC 2006). For example, substances can act 
through multiple mechanisms and pathways, and cell type, developmental stage, genetic background, and co
exposures make null findings difficult to interpret. 

For each of the 10 characteristics, the evidence can be labeled strong, moderate, weak, or insufficient to 
evaluate. The mechanistic evidence is then integrated with the evidence from other data streams to support 
conclusions about carcinogenicity. As cited in IARC (2016b), the conclusions are as follows: 

Group 1: Carcinogenic to humans 

- Sufficient evidence in humans OR 
- Sufficient evidence in animals AND strong evidence in exposed humans that the agent acts through 

a relevant mechanism OR 
- Clearly belongs, based on mechanistic considerations, to a class of agents for which one or more 

members have been classified in Group 1 

Group 2A: Probably carcinogenic to humans 

- Limited in humans AND sufficient in animals OR 
- Inadequate in humans AND sufficient in animals AND strong evidence that the carcinogenesis is me-

diated by a mechanism that also operates in humans OR 
- Clearly belongs, based on mechanistic considerations, to a class of agents for which one or more 

members have been classified in Group 2A 

Group 28: Possibly carcinogenic to humans 

- Limited in humans AND less than sufficient in animals OR 
- Inadequate in humans BUT sufficient in animals OR 
- Inadequate in humans AND less than sufficient in animals AND supporting evidence from mechanistic 

and other relevant data 

Group 3: Not classifiable as to its carcinogenicity to humans 

- Inadequate in humans AND inadequate/limited in animals OR 
- Inadequate in humans AND sufficient in animals AND strong evidence that the mechanism of car-

cinogenicity in animals does not operate in humans 
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UNCERTAINTIES 

Uncertainty accompanies all methods used to generate data inputs for risk assessments. In the case 
of data from new testing methods, there is the inherent variability of the assays and the qualitative uncer
tainty associated with their use (see Chapter 3). Such uncertainty arises with other types of assays, such as 
rodent bioassays, for which standard uncertainty factors are in place and accepted. The Tox21 report 
acknowledged the need to evaluate "test-strategy uncertainty," that is, the uncertainty associated with the 
introduction of a novel series of testing methods. For new assay methods, the quantification of uncertainty 
and its handling in practice remain to be addressed. 

With regard to dealing with analytical uncertainties, the committee notes that the 1983 NRC report 
Risk Assessment in the Federal Government: Managing the Process remains enlightening. As discussed 
in Chapter 5, that report laid out the iconic four steps in risk assessment: hazard identification, dose
response assessment, exposure assessment, and risk characterization. The report noted that in each step a 
number of decision points occur in which "risk to human health can only be inferred from the available 
evidence." For each decision point, the 1983 committee recommended the adoption of predetermined 
choices or inference options ultimately to draw inferences about human risk from data that are not fully 
adequate. The preferred inference options were also called default options and were to be based on scien
tific understanding and risk-assessment policy and to be used in the absence of compelling evidence to the 
contrary. Other NRC committees have reiterated the importance of what have been come to be known 
simply as defaults and have noted that those used by EPA typically have a relatively strong scientific ba
sis (NRC 1994, 2009). The 1983 committee also called for the establishment of uniform inference guide
lines to ensure uniformity and transparency in agency decision-making and called for flexibility in provid
ing for departure from defaults in the presence of convincing scientific evidence. EPA developed a system 
of guidelines that cover a wide array of risk-assessment topics. The 1983 recommendations have also 
been reinforced in other NRC reports (NRC 1994, 2009), and the present committee reiterates the im
portance of establishing uniform guidelines and a system of defaults in the absence of clear scientific un
derstanding and the importance of enhancing the default system as described in Science and Decisions: 
Advancing Risk Assessment (NRC 2009). The enhancements include making explicit or replacing missing 
and unarticulated assumptions in risk assessment and developing specific criteria and standards for de
parting from defaults. The current committee notes, however, that the volume and complexity of 21st cen
tury data and the underlying science pose particularly difficult challenges. Systems of defaults and ap
proaches to guide assessment should be advanced once best practices develop, as elaborated in the dose
response section above. 

The Tox21 report used test-strategy uncertainty to refer to the overall uncertainty associated with 
the testing strategy and commented that "formal methods could be developed that use systematic ap
proaches to evaluate uncertainty in predicting from the test battery results the doses that should be without 
biologic effect in human populations." Until such methods are developed, judgments as to the strength of 
evidence on pathway activation will continue to be based on expert judgment that draws on such guide
lines as discussed above. 

CHALLENGES AND RECOMMENDATIONS 

The new direction for risk assessment advanced in this report is based on data from 21st century sci
ence on biological pathways and approaches that acknowledge that stressors from multiple sources can 
contribute to a single disease and that a single stressor can lead to multiple adverse outcomes. The new 
techniques of 21st century science have emerged quickly and have made it possible to generate large 
amounts of data that can support the new directions in exposure science, toxicology, and epidemiology. In 
fact, the technology has evolved far faster than have approaches for analyzing and interpreting data for 
the purposes of risk assessment and decision-making. This chapter has addressed the challenges related to 
data interpretation, analysis, and integration; evidence synthesis; and causal inference. The challenges are 
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not new but are now amplified by the scope of the new data streams. The committee lists some of the 
most critical challenges below with recommendations to address them. 

A Research Agenda for Data Interpretation and Integration 

Challenge: Insufficient attention has been given to data interpretation and integration as the devel
opment of new methods for data generation has outpaced the development of approaches for interpreting 
the data that they generate. The complexity was recognized in the Tox21 and ES21 reports, but those re
ports did not attempt to develop an approach for evidence integration and interpretation to make determi
nations concerning hazards, exposures, and risks. 

Recommendation: The committee recommends greater attention to the problem of drawing infer
ences and proposes the following empirical research agenda. 

(1) The development of case studies that reflect various scenarios of decision-making and data 
availability. The case studies should reflect the types of data typically available for interpretation and in
tegration in each element of risk assessment-hazard identification, dose-response assessment, exposure 
assessment, and risk characterization-and include assessing interindividual variability and sensitive 
populations. 

(2) Testing of the case studies with interdisciplinary and multidisciplinary panels, using best practic
es and the guided-expert-judgment approaches, such as described above. There is a need to understand 
how such panels of experts will evaluate the case studies and how various data elements might drive the 
evaluation process. Furthermore, communication between people from different disciplines, such as 
Bayesian statisticians and mechanistic toxicologists, will be essential for successful and reliable use of 
new data; case studies will provide a means of testing how interactions might best be accomplished in 
practice. 

(3) A comprehensive cataloging of evidence evaluations and decisions that have been taken on vari
ous agents so that expert judgments can be tracked and evaluated and the expert processes calibrated. The 
cataloging should capture the major gaps in evidence and attendant uncertainty that might have figured 
into evidence evaluation. 

( 4) More intensive and systematic consideration of how statistically based tools for combining data 
and integrating evidence, such as Bayesian approaches, can be used for incorporating 21st century science 
into hazard, dose-response, exposure, and interindividual-variability assessments and ultimately into the 
overall risk characterization. 

Advancing the Use of Data on Disease Components and Mechanisms in Risk Assessment 

Challenge: Data generated from tools that probe components of disease are difficult to use in risk 
assessment partly because of incomplete understanding of the linkages between disease and components 
and because of uncertainty around the extent to which mitigation of exposure changes expression of a 
component and consequently changes the associated risk. 

Recommendation: The sufficient-component-cause model should be advanced as an approach for 
conceptualizing the pathways that contribute to disease risk. 

Recommendation: The committee encourages the cataloging of pathways, components, and mecha
nisms that can be linked to particular hazard traits, similar to the IARC characteristics of carcinogens. 
This work should draw on existing knowledge and current research in the biomedical fields related to mecha
nisms of disease that are outside the traditional toxicant-focused literature that has been the basis of human
health risk evaluations and of assessments and toxicology. The work should be accompanied by research 
efforts to describe the series of assays and responses that provide evidence on pathway activation and to 
establish a system for interpreting assay results for the purpose of inferring pathway activation from 
chemical exposure. 
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Recommendation: High priority should be given to the development of a system of practice related 
to inferences for using read-across for data-sparse chemicals; that practice area provides great opportuni
ties for advancing various tools and incorporating their use into risk assessment. High priority should also 
be given to using multiple data streams to evaluate low-dose risk, as elaborated on in NRC (2009). 

Developing Best Practices for Data Integration and Interpretation 

Challenge: The emergence of new data streams clearly has complicated the long-standing problem 
of integrating data for hazard identification, which the committee views as analogous to inferring a causal 
relationship between a putative causal factor and an effect. The committee considers that two challenges 
are related to data integration and interpretation for hazard identification: (1) using the data from the 
methods of 21st century science to infer a causal association between a chemical or other exposure and an 
adverse effect, particularly if it is proximal to an apical effect, and (2) integrating new lines of evidence 
with those from conventional toxicology and epidemiological studies. Although much has been written on 
this topic, proposed approaches rely largely on guided expert judgment. 

Recommendation: The committee sees no immediate alternative to the use of guided expert judg
ment as the basis of judgment and recommends its continued use for the time being. Expert judgment 
should be guided and calibrated in interpreting data on pathways and mechanisms. Specifically, in these 
early days, the processes of expert judgment should be documented to support the elaboration of best 
practices, and there should be periodic reviews of how evidence is being evaluated so that the expert
judgment processes can be refined. Those practices will support the development of guidelines with ex
plicit default approaches to ensure consistency in application within particular decision contexts. 

Recommendation: In the future, pathway-modeling approaches that incorporate uncertainties and in
tegrate multiple data streams might become an adjunct and perhaps a replacement. Methodological re
search to advance those approaches is needed. 

Challenge: The size of some datasets and the number of outcomes covered complicate communica
tion of findings to the scientific community and to those who use results for decision-making. There 
might be distrust because of the need to use methods that are complex and possibly difficult to understand 
for the large datasets. 

Recommendation: Data integration should be complemented by visualization tools to enable effec
tive communication of analytical findings from complex datasets to decision makers and other stakehold
ers. Transparency of the methods, statistical rigor, and accessibility to the underlying data are key ele
ments for promoting the use and acceptance of the new data in decision-making. 

Challenge: Given the complexities of 21st century data and the challenges associated with their in
terpretation, there is a potential for a decision to be based ultimately on a false-positive or false-negative 
result. The implications of such an erroneous conclusion are substantial. The challenge is to calibrate ana
lytical approaches to optimize their sensitivity and specificity for identifying true associations. If public
health protection is the underlying goal, an approach that generates more false-positive than false
negative conclusions might be appropriate in some decision contexts. A rigid, algorithmic approach might 
prove conservative but lead to false-negatives or at least to a delay in decision-making because more evi
dence is required. 

Recommendation: This challenge merits the development of guidelines and best practices that use 
processes that involve direct discussion among researchers, decision-makers, and other stakeholders who 
might have different views as to where the balance between sensitivity and specificity should be placed. 

Addressing Uncertainties in Using 21st Century Tools in Dose-Response Assessment 

Challenge: There are multiple potential complications in moving from in vitro testing and in vivo 
toxicogenomic studies to applying the resulting dose-response estimates to human populations. Uncer-

Prepublication Copy 157 

ED_001449_00000002 



Using 21st Century Science to Improve Risk-Related Evaluations 

tainties are introduced that parallel and might exceed those associated with extrapolation from animal 
studies to humans. Sources of uncertainty include chemical metabolism, the relevance of pathways, and 
the generalizability of dose-response relationships that are observed in vitro. There is also the challenge 
of integration among datasets and multiple lines of evidence. 

Recommendation: The challenges noted should be explored in case studies for which the full array 
of data is available: high-throughput testing, animal studies, and human studies. Bayesian methods need 
to be developed and evaluated for combining dose-response data from multiple test systems. And a sys
tem or practice and default-data integration approaches need to be developed that promote consistent, 
transparent, and reliable application that explain and account for uncertainties. 

Developing Best Practices for Analyzing Big Data for Application in Risk Assessment 

Challenge: Enormous datasets that pose substantial analytical challenges are being generated, par
ticularly in relation to identifying biologically relevant signals given the possibility of false-positives re
sulting from multiple comparisons. 

Recommendation: Best practices should be developed through consensus processes to address the 
statistical issues listed in Box 7-4 that complicate analyses of very large datasets. Those practices might 
differ by decision context or data type. Adherence to best practices sets a consistent approach for weigh
ing false positives against false negatives and maintaining high integrity in reporting. Analyses should be 
carried out in transparent and replicable ways to ensure credibility and to enhance review and acceptance 
of findings for decision-making. Open data access might be critical for ensuring transparency. 
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Case Studies on Chemical Assessments 

This appendix provides case studies that show how 21st century science can be used for chemical 
assessment, including any component of the risk-assessment process (hazard identification, dose
response assessment, exposure assessment, or risk characterization). The first case study illustrates the use 
of read-across methods to address gaps in information on a data-poor chemical. The second uses air pollu
tion as a topic to illustrate how 21st century science can be used to address unanswered questions about 
well-defined hazards or data-rich chemicals and to evaluate emerging concerns about those hazards or 
chemicals. 

APPLICATIONS OF READ-ACROSS FOR A DATA-POOR CHEMICAL 

As discussed in Chapters 3 and 5, read-across involves the assessment of a chemical on the basis of 
its structural similarities to chemicals that have already been tested and takes into account any differences 
that might influence pharmacokinetics, metabolism, or toxicodynamics. The approach can be coupled 
with computational and high-throughput data to support or refute the read-across results (see Figure 5-5). 
Alkylphenols are used as example chemicals for this case study. 

Alkylphenols are metabolites or persistent environmental breakdown products of alkylphenol ethox
ylates, chemicals that were formerly used in detergents. A few of the more widely used alkylphenols, partic
ularly p-octylphenol and p-nonylphenol, have a rich toxicology dataset. In this case study, p-octylphenol and 
p-nonylphenol are used as analogues to support the assessment of p-dodecylphenol, a data-poor chemical 
that has been tested in ToxCast. Both p-octylphenol and p-nonylphenol have weak affinity for estrogen re
ceptors in vitro (Laws et al. 2000). In vivo reproductive-toxicity data on the two chemicals have conflicting 
results. Multigeneration studies run under good-laboratory-practice (GLP) conditions by National Toxicolo
gy Program (NTP) indicate a few effects on reproduction with lowest observed-adverse-effect levels in the 
oral-intake range of about 30-100 mg/kg-day (p-nonylphenol, Chapin et al. 1999; p-octylphenol, Tyl et al. 
1999). Other studies show effects on the reproductive system, although by different routes, such as parenter
al injection, or at higher oral doses (see, for example, Hossaini et al. 2003; Mikkila et al. 2006). Thus, the 
critical end point for the read-across is reproductive toxicity with estrogenicity as the presumed mechanism. 

p-Dodecylphenol is a related chemical on which there are few in vivo toxicity data. The Kow for p
dodecylphenol is higher than those of the other alkylphenols, but all are very hydrophobic (see Table B-
1 ). The chemical structure of p-dodecylphenol is similar to those of p-octylphenol and p-nonylphenol; the 
difference is that it has four or three more carbons, respectively, on the alkyl chain. Chemical-similarity 
scores for straight-chain p-octylphenol or p-nonylphenol are in the range of 55-65%. The chemical simi
larity score is a measure of molecular similarity that is based on atom-by-atom matching and is a good 
starting point for molecular comparisons. However, there is no bright-line chemical-similarity score for 
analogue suitability; it should be considered with other factors, such as physical chemistry and specific 
molecular features that can dramatically change potential reactivity or biological activity. Wu et al. (2010) 
provide a series of heuristics for determining the suitability of analogues for read-across. The committee 
notes that the chemical-similarity scores in Table B-1 suggest that the branched p-nonylphenol might be 
inappropriate for read-across for p-dodecylphenol. However, it is included here because most models of 
estrogenicity would consider para-substituted phenol moieties to have a potential to interact with the es
trogen-receptor binding site-see, for example, the decision-tree scheme of Wu et al. (20 13). 
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ToxCast has data on the chemicals in Table B-1. In each case, the most sensitive assay (the assay 
that has the lowest AC50

1
) was one that measured estrogenic activity, and all chemicals were active in 

several estrogen-response assays at concentrations below 10 11M. Estrogen response (such as binding to 
the receptor or activation of an estrogen-response element) was by far the most prevalent response to all 
four chemicals in ToxCast. Those results are consistent with the predictions from a qualitative structure
activity relationship (SAR) program developed by EPA that classifies all the chemicals as having weak 
estrogenic activity on the basis of the presence of a para-substituted phenol and the known estrogenic 
activity of p-alkylphenols as a class. A few other assays had a strong positive concentration response and 
an AC50 at or below 10 11M (see Table B-2). Activity also included interactions with a retinoid X receptor 
(RXR) isoform, pregnane X receptor (PXR), a vitamin D receptor, and peroxisome proliferator-activated 
receptor gamma (PPAR-y), and mitochondrial toxicity (see Table B-2). 

In summary, the SAR and ToxCast data support grouping p-dodecylphenol with the other phenols as 
chemicals that appear to have a common mechanism, weak estrogenicity. The minor bioactivity observed 
with the other receptors (RXR, PXR, vitamin D receptor, and PPAR-y) is not unexpected and emphasizes 
that the toxicant activity is typically multimodal. Even endogenous hormones that are considered to have 
high specificity for a particular receptor have comparable nonspecificity (Kelce and Gray 1997), and high
throughput assays provide the basis for evaluating other potential or unsuspected toxicities. The interactions 
at higher concentrations are probably not involved in toxicity. The overall in vitro potency of p
dodecylphenol as an estrogen appears to be higher by a factor of roughly 15 than that of the p-octyl and p
nonyl analogues, and it was active in 3 times as many estrogen-receptor assays. Because p-dodecylphenol is 
the most hydrophobic of the alkylphenols, its lower AC50 could be inaccurate (see references and discussion 
in Chapter 2 on challenges in interpreting in vitro test data), but the data indicate that its estrogenicity in 
vitro is in the range of the other alkylphenols tested. 

TABLE B-1 Octanol-Water Partition Coefficients (K0 ws) and Chemical Similarity Scores (CSSs) 
of Selected Alkylphenols 
Chemical 

p-Octylphenol 

p-Nonylphenol 

CAS Number 

1806-26-4 

104-40-5 

5.5 

5.76 

0.55 

0.64 

Branchedp-nonylphenol 84852-15-3 5.77 0.15 

p-Dodecylphenol 104-43-8 7.91 

aLog K0 ws are from EPA's EPI Suite database and prediction program (EPA 2011 ). 
bThe CSSs of analogues to test chemical (p-dodecylphenol) were calculated by using the Tanimoto coefficient from 
an on-line source (http://chemmine.ucr.edu). CSSs provide another line of evidence (quantitative) for using (or not 
using) visual read-across (qualitative) data. 

TABLE B-2 Activity in ToxCast Assays for Selected Alkylphenols 
_______ P_r_ot_e_in_I_nt_er_a_ct_io_n_s:....; A_C_·:..:.'o_v....,al_u_es_i_n_,_!l_M_a______ Mitochondrial 

Chemical ER RXR PXR Vitamin D Receptor PPAR-y Toxicity 

p-Octylphenol 1.44 ( 4) 1.71 9.23 

p-Nonylphenol 1.35 (3) 8.19 7.36 

Branched p-nonylphenol 0.517 (14) 1.4 2.29 1.98 6.3 

p-Dodecylphenol 0.084 (13) 2. 74 1.45 3.28 

~umber in parentheses is the number of estrogen-responsiveness assays with an AC50 less than 10 11M. 
Abbreviations: ER, estrogen receptor; PP AR-y, peroxisome proliferator-activated receptor gamma; PXR, pregnane 
X receptor; RXR, retinoid X receptor. 

1AC50 is the concentration at which a 50% response is elicited in an in vitro assay. 
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Estrogenic responses of p-octylphenol and p-nonylphenol have been reported in numerous studies, 
including in vivo rat multigeneration studies conducted by NTP (Chapin et al. 1999; Tyl et al. 1999). For 
the present case study, the no observed-adverse-effect levels (NOAELs)2 identified by the two NTP stud
ies could be used as a starting point to derive a reference dose of p-dodecylphenol, although it should be 
noted that other published studies reported effects at lower doses. The studies were both feeding studies in 
which a dietary concentration of200 mg/kg had no reproductive effects. Because the animals' growth and 
food consumption changed over time, a range of doses (9-36 mg/kg-day) was associated with that concen
tration. Using the NOAELs as surrogates for p-dodecylphenol could require an adjustment for potency: 
the lowest AC50 for p-dodecylphenol was about one-twentieth of the lowest AC50 for p-octylphenol and p
nonylphenol, and this could require a comparable revision of the NOAEL. 

Several limitations were identified in this read-across exercise. Improved estimations of the AC50 

data by using in vitro mass-balance models could be prudent before adjusting the NOAEL. Adjustments 
of the NOAEL on the basis of possible differences in the pharmacokinetics of the chemicals should also 
be considered. Differences in logK0 w of 2 orders of magnitude are likely to be important in the rate and 
extent of absorption and clearance, although in this case the hydrophobicity of all the chemicals is high 
enough that one would expect high oral absorption of all chemicals. Predicted estimates of absorption and 
clearance and NOAELs for estrogenic effects could be obtained from targeted testing or similarly focused 
studies to corroborate the inferences based on read-across. Finally, the uncertainty in read-across should 
be assessed to ensure consistency and appropriate conservatism (Blackburn and Stuard 2014). 

An outcome of this read-across exercise could be classification of p-dodecylphenol as an estrogenic 
compound potentially more potent than the other alkylphenols. Establishment of a reference dose would 
be plausible, but additional information on metabolism, absorption, and developmental effects on estro
gen-sensitive organs would improve confidence. 

AIR-POLLUTION CASE STUDY 

There is long-standing concern that exposure to air pollution might lead to chronic health effects, but 
only in the last several decades have epidemiological studies convincingly linked air-pollution exposure to 
premature mortality and increased risk of cardiovascular disease and cancer (EPA 2009). Beyond demon
strating hazard, recent studies have refined the characterization of the exposure-response relationship 
(Beelen et al. 2014). The new evidence reflects the increasing computing power that has enabled refine
ments in epidemiological methods, especially data-intensive exposure assessment that combines large-scale 
ambient monitoring of pollutants with advanced geographic information system (GIS) applications, disper
sion models, and land-use regression (LUR) models to estimate exposures of large populations. Those 
methods-and decades of investment in nationwide air-pollution surveillance networks-have allowed re
searchers to establish long-term exposure models for large prospective cohort studies and to investigate 
long-term consequences of air pollution, such as cancer and cardiovascular disease, while controlling for 
major potential confounders. Studies based on those advances-exemplified by recent publications from the 
European Study of Cohorts for Air Pollution Effects (ESCAPE) consortium (Beelen et al. 2014)-have led 
a working group of the International Agency for Research on Cancer (IARC) to conclude that there is "suf
ficient" evidence to conclude that ambient air pollution is carcinogenic to humans and that the evidence is 
"sufficient" to conclude that airborne PM is carcinogenic to humans (IARC 2015). 

The evidence on the causal relationship of air pollution with lung cancer (IARC 2015) is strong, and 
hazard identification is not at issue with regard to regulatory decision-making, at least in high-income 
countries with well-established evidence-based air-quality standards. However, there are a number of un
answered scientific questions concerning air pollution and cancer that are still relevant to regulatory deci
sion-making; for these questions, 21st century science has the potential to reduce uncertainty around key 
issues relevant to tightening and targeting air-quality regulation. This particular case study illustrates how 

2The committee notes that a point of departure identified through benchmark-dose modeling could also be used. 
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new and emerging science can be used to address lingering questions about well-defined hazards or data
rich chemicals and considers the following key issues: 

IdentifYing critical air-pollution sources and components. (1) Air pollution is a mixture that reflects 
its many sources; its composition varies by time and space. (2) The composition of the pollutant mix is not 
fully characterized, and research suffers from the "lamp-post syndrome" (that is, it has focused on a few 
target or indicator pollutants, such as the US Environmental Protection Agency's criteria pollutants, includ
ing PM and nitrogen dioxide). (3) There is potential for interaction and synergy among different compo
nents of the air pollution mixture with implications for overall mixture toxicity. 

::J Characterizing the exposure-response relationship. (1) On the basis of available epidemiological 
evidence, there is no apparent threshold for the long-term effects of air pollution at current levels in the 
United States and elsewhere, particularly on total mortality and on cancer (Raaschou-Nielsen et al. 2013; 
Beelen et al. 2014; Hamra et al. 2014). (2) The power to detect effects and characterize risks precisely at low 
exposures is difficult even in large cohorts, such as the ESCAPE and American Cancer Society cohorts. (3) 
There are various hypotheses about the possible mechanisms by which air pollution causes long-term ad
verse effects at current exposures, and the mechanisms are likely to vary by outcome and pollutant mixture. 
( 4) Specific groups might be at greater risk because of particular characteristics, such as genetics, life stage, 
disease status, or co-exposure to other agents. 

Addressing emerging concerns. There is an expanding list of possible adverse health effects of 
long-term exposure to air pollution. For example, some evidence indicates possible adverse effects on neu
rodevelopment in children and decline of cognitive function in adults (Calderon-Garciduenas et al. 2014; 
Chen et al. 2015). 

This case study develops two parallel examples. One is based on lung cancer, and the main concerns 
are estimating the exposure-response relationship, especially at low exposures, as experienced in the 
United States and much of Europe and identifying mechanisms involved and key mixture components 
that might drive cancer risk. The second example, neurodevelopment in children, has been chosen for dif
ferent reasons. The questions concern mainly hazard identification because causal associations with air 
pollution for any specific neurodevelopmental outcome are far from well-established. The uncertainties in 
a number of neurodevelopmental outcomes reflect the challenges in investigating rare but severe out
comes, such as autism, that require large pregnancy cohorts that have detailed air-pollution assessments 
and the difficulties in comparing results among studies that evaluate a large array of neuropsychological 
effects and cognitive function at different developmental ages in children exposed to various pollutant 
mixtures. 

Lung Cancer: Characterizing the Exposure-Response 
Relationship and Identifying Key Mixture Components 

Current epidemiological tools are unlikely to offer direct answers to the related problems of charac
terizing risk precisely at low doses and determining the shape of the exposure-response curve partly be
cause there are limits to the size of cohorts that can be assembled and because exposure-measurement 
error is unavoidable with the available tools. However, those problems can be addressed with new and 
emerging approaches and tools described below that help to characterize exposure more precisely and to 
probe mechanisms more deeply. 

External Exposome 

One critical issue in characterizing the exposure-response relationship is defining exposures more 
precisely, particularly at low levels of exposure. New exposure-assessment approaches centered around 
the concept of the exposome can help to address that issue. As defined in Chapter 1, the term exposome 
refers to the totality of a person's exposure. It is discussed here because of the emergence of new tools 
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that provide time-integrated measurements of multiple pollutants at the individual level with greater spa
tial and temporal resolution than could be achieved previously (see Chapter 2). Such measurements po
tentially will help to characterize the exposure-response relationship better by reducing exposure
measurement error and by providing the needed inputs for measurement-error correction models. 

The new exposure approaches contrast sharply with those used in past studies. Originally, epidemio
logical studies of air pollution relied on exposure classifications that were based on a few measurements 
in a few locations. Even the well-known Harvard Six Cities Study (Dockery et al. 1993), initiated in 1974, 
relied on central site measurements in the six selected cities. The wave of time-series studies that began 
about 3 decades ago fully incorporated the temporal detail of exposure measures but still used monitoring 
data that were limited spatially, such as central site monitors. Later cohort studies also incorporated more 
temporally refined measures, such as hourly or daily ambient monitoring station values, but again were 
spatially limited, often taken at one or a few stations per city. Citywide average exposures during speci
fied periods were then applied to all residents in a design that would now be recognized as ecological or 
semiecological (that is, population-level assignment of exposure but with individual-level covariate in
formation) (Ktinzli and Tager 1997). That approach, reflected in the Six Cities Study, ignores within-city 
variation and implicitly assumes that there is little spatial heterogeneity of air pollutants or that residents 
moved around cities enough to be similarly exposed to various pollutant sources. Neither assumption is 
correct in practice. Thus, measurement error was implicit in those studies, which nonetheless found asso
ciations with indicators of PM exposure, most likely because it was possible to exploit the high temporal 
resolution and fluctuations in air pollutants, especially in assessing short-term effects, such as in the time
series studies of mortality. 

New tools are being developed to capture spatial variation in effects better (Coker et al. 2015). Early 
21st century advances-such as GIS applications, dispersion models, and LUR models-have added a 
major refinement of capturing spatial variation in exposure assessment. Before those advances, exposures 
were generally assigned on the basis of residential location, and that practice accounted for some of the 
within-city variation. Reliance on residential location, however, did not fully capture or integrate expo
sures from multiple sources on larger geographic scales. For example, in Europe and the United States, 
investigators used tailored measurements of PM2 5 in a number of cities with multiple land-use character
istics of each area (traffic, ports, population density, and factories) to predict concentrations at individual 
addresses with reasonably good performance by using LUR models and sometimes adding a temporal 
component to the estimates with data from routine ambient monitoring (Raaschou-Nielsen et al. 2013). 
However, those measurements were affected by measurement error as suggested by comparisons with, for 
example, personal-exposure monitoring campaigns. The latter are based on the use of backpacks or simi
lar devices containing instruments that measure exposure at the individual level with great temporal and 
spatial resolution; such campaigns are generally conducted for shorter periods, such as 2-4 weeks, for 
feasibility. The external exposome measures showed the complexity of capturing the entirety of personal 
exposure to PM. For example, cooking was shown to be an important source of exposure to ultrafine par
ticles. Such studies added to earlier understanding that personal exposure to air pollution can vary widely 
in time and space and be driven by specific time-activity patterns, such as time spent at home, in traffic, 
at work, and in restaurants. Without an understanding of such variation, exposure estimates can be quite 
inaccurate and bias risk estimates (Nieuwenhuijsen et al. 2015). New personal devices that will measure a 
large variety of pollutants are under development, as reported in Chapter 2. 

However, none of the new sensor technologies is likely to be feasibly implemented (in terms of data 
handling and security) at the individual level in large cohorts over the extended periods (decades) neces
sary to investigate risks of chronic disease outcomes. Studies that are sufficiently large and have the de
tailed exposure information needed to address the key questions related to lung cancer and air pollution 
are not likely to be undertaken. Crowd sourcing or anonymous data collection using sensors might be a 
feasible alternative if implemented within existing or new general cohorts. The resulting data would then 
be used to refine exposure models and estimates associated with participants in such cohorts. Possible 
limitations of such data-collection methods include sampling bias and measurement error in the devices 
that might feasibly be deployed (see NRC 2012 for a more detailed discussion of possible limitations). 
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The committee anticipates further refinements of exposure estimates within cohort studies. The refine
ments might be achieved by including extensive time-activity data in sophisticated spatiotemporally re
fined pollution models and by controlling measurement error better, which would reduce one major con
tributor to uncertainty in the burden oflung cancer attributable to air pollution. 

New and emerging approaches also will be helpful for addressing the other challenge noted above 
that is related to characterizing the specific mixture components and the corresponding sources that drive 
lung-cancer risk. Most evidence on the health effects of PM air pollution from epidemiological studies
for example, on lung cancer-is based on estimated PM mass as the indicator of exposure. But PM is a 
complex mixture, and particles of different size and compositions might differ in toxicity and 
carcinogenic potentiaL Furthermore, PM exists within the broader air-pollution mixture. 

New modeling approaches can provide estimates of concentrations of various PM components and 
characteristics and facilitate the exploration of the relationships between specific PM components and 
health risk. Recent studies have comprehensively characterized sources of outdoor air pollution and in
corporated LUR models for estimating ambient PM10 , PM25 , and nitrogen dioxide (Raaschou-Nielsen et 
aL 2016). Models have then been developed for elemental composition (x-ray fluorescence), elemental 
and organic carbon, polycyclic aromatic hydrocarbons (PAHs), benzene, and ultrafine particles, which 
have been studied little because of difficulties in exposure assessment (Chang et al. 2015). Exposure es
timation for ultrafine PM is now possible with, for example, an innovative mobile monitoring design that 
has been shown to be reliable and cost-effective (Hudda et aL 2014). 

There are opportunties to use new in vitro and in vivo assays to evaluate and compare toxicity of 
PM samples. One of the properties of particles likely to reflect toxicity is oxidative potential, a property 
for which novel assays have been developed that measure the reduction of antioxidants in lung-lining 
fluid (Kelly and Fussell2015). By analyzing the spatial and temporal variability of the oxidative potential 
of PM in filters, one can characterize the determinants of that variation and develop new spatially re
solved air-pollution models for oxidative potential (Yang et aL 2015). 

The air-pollution models alone, however, provide information only on ambient outdoor-pollutant 
concentrations and do not incorporate data on locations of members of the population needed for an expo
sure-assessment approach that would integrate data on various spaces. The models do not specifically 
take into account indoor exposure sources or indoor exposures to outdoor pollutants that have penetrated 
indoors. Recent advances in GIS (for example, route modeling) and microenvironmental models (for ex
ample, indoor-to-outdoor exposures) have led to the development of more detailed personal-exposure 
models that can be fed by rich sources of detailed data on population time-activity patterns, which should 
reflect time spent indoors. Regarding outdoor exposures, many cities hold information on origin and des
tination travel details from prepaid card systems or survey data on traveL Combined with regional or na
tional surveys on time-use, those data constitute a rich additional source for personalized exposure mod
els. Detailed data on personal and population-wide air-pollution exposures and space-time activity 
patterns from monitoring campaigns are required to evaluate new exposure models and thus support their 
use in providing improved exposure estimates for epidemiological studies and risk assessment. 

Internal Exposome 

The internal exposome can be investigated with two broad approaches: directly with analytical 
chemistry (as described in Chapter 2) and indirectly with several -omics technologies. Direct measure
ment focuses on the exogenous chemicals that can be found in internal fluids and measured with great 
sensitivity given current analytical-chemistry methods. Indirect measurements are based on changes in 
DNA, RNA, proteins, or metabolites from which exposure to particular exogenous chemicals can be in
ferred. Genomics, transcriptomics, epigenetics, and proteomics allow only indirect inferences on expo
sures, and metabolomics and adductomics might allow direct measurements. 

The use of -omics technologies described in this appendix allows the study of changes-for exam
ple, in blood or urine-that can help to characterize adverse effects of air pollutants, to refine exposure, to 
identify mechanisms, and to identify groups at risk. Here, the committee describes the potential contribu-
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tions of the different -omics technologies in relation to the regulatory issues raised above and provides a 
few examples intended to show the potential of the rapidly developing science. A systematic review on 
the topic was not possible, given the scope of the relevant literature and the rapid development of this 
field. See Chapter 1 for definitions of -omics technologies. 

Genomics 

Carcinogenesis is understood to be a multistep process to which genetic and nongenetic changes 
contribute (see Smith et al. 2016). For lung cancer and air pollution, information on genetic determinants 
of risk would be useful for public-health protection. Genomics can be based on the systematic investiga
tion of genetic (inherited) variants that lead to or increase susceptibility to air-pollution-related disease or 
can be based on the study of somatic mutations induced by air pollution in cells. Concerning inherited 
susceptibility, several genetic variants (such as GSTMl) have been investigated in the candidate gene era; 
more recently, variants have been identified thanks to genome-wide association studies (see, for example, 
Kachuri et al. 2016). The associations of genetic variants with lung cancer are mostly weak, but the find
ings of some variants associated with lung-cancer risk have identified groups in the population that are 
potentially more susceptible to carcinogens. 

A potentially fruitful approach for identifying susceptible groups is to develop profiles of suscepti
bility that are based on genetic pathways. For example, Bind et al. (2014) used a pathway-analysis ap
proach to investigate whether gene variants that are associated with such pathways as oxidative stress, 
endothelial function, and metal processing modified the association of PM exposure and fibrinogen, C
reactive protein, intercellular adhesion molecule-1, or vascular-cell adhesion molecule- I. 

Concerning somatic (acquired) mutations, the sequencing of several types of cancer tissues has 
shown that mutational patterns can reflect environmental mutagens (Nik-Zainal et al. 2015). For example, 
lung cancer has a mutational pattern that strongly resembles that induced by benzo[a]pyrene (B[a]P) in in 
vitro assays that use immortalized mouse embryo fibroblasts (Nik-Zainal et al. 2015). The results revealed 
that B[a]P induces a characteristic mutation signature: predominantly G---+T mutations for B[a]P as op
posed to C---+ T and CC---+ TT for ultraviolet radiation and A---+ T for aristolochic acid, a carcinogenic and 
mutagenic compound. Thus, the study suggests that the carcinogenicity caused by smoking (and possibly 
air pollution) could be due to the PAH component in smoke (or ambient air). Mechanistically, that infor
mation is of great importance. 

Genomics could thus prove useful in two ways. First, genetic (inherited) variants that contribute to 
modulating the cancer risk associated with air-pollution exposure could be identified. Identification of 
populations at greater (or less) risk would refine understanding of the exposure-response relationship and 
point to a susceptible population. Second, if a molecular signature in tumor tissue (somatic mutations) 
were linked specifically to air-pollution exposure, burden could be more effectively quantified and expo
sure-response models developed for particular phenotypes defined by etiology. The committee notes that 
substantial research indicates differences in mutational spectra of lung cancers between smokers and nev
er smokers, although markers that are definitive for any specific type of environmental exposure have not 
yet been identified. Third, even if signatures are not identified, mechanistic insights that support biologi
cal plausibility further and perhaps provide insights concerning mixture components could be gained. 

Epigenomics 

Environmental exposures are able to change epigenetic signatures, for example, the methylation pat
tern of DNA or chromatin. DNA methylation and the associated repressed or activated transcription of 
genes might affect carcinogenesis (Vineis et al. 2010). Changes in methylation of the aryl-hydrocarbon 
receptor (AHR) repressor gene show that methylation can be used as a marker of exposure to smoking 
(Shenker et al. 2013) and to monitor the effect of cessation of exposure (Guida et al. 2015). Some authors 
have used AHR repressor methylation as a marker for in utero exposure of the fetus to tobacco-smoke 
components from maternal smoking (Joubert et al. 2012). Epigenetic markers in cord blood and placental 
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tissue could also be used to detect possible effects of air-pollution exposure on the fetus and might be use
ful in addressing the question of whether maternal exposure to air pollution leads to developmental effects 
(Novakovic et al. 2014). And epigenetic markers might provide information on exposure to air pollution 
and even particular components. 

How informative epigenetics is in studying risks of disease or health outcomes depends on whether 
the markers are permanent, whether they develop during a critical age window, and whether the right tis
sue can be investigated; methylation markers are tissue-specific. A few studies have investigated the ef
fects of air-pollution exposure on DNA-methylation patterns (see, for example, Baccarelli et al. 2009) and 
focused on methylation oflong interspersed element-1 (LINE-1) and Alu elements as measures of whole
genome methylation in blood cells. LINE-1 and Alu elements are retrotransposons, that is, repetitive and 
mobile sequences in the genome. LINEs comprise a substantial proportion of the genome, and LINE-1 
and Alu methylation correlates with overall cellular levels of DNA methylation. Air pollution was found 
to alter LINE-1 methylation (Baccarelli et al. 2009; Demetriou et al. 20 12). 

Epigenetic changes might also be integral to carcinogenesis, perhaps to the same extent as genetic 
mutations. Fasanelli et al. (2015) showed that the same genes (including the AHR respressor gene) for 
which methylation changes are associated with smoking predict lung-cancer risk. Similar studies are not 
available for air pollution and lung cancer. 

Given the substantial current emphasis on the epigenome and the environment, the committee antic
ipates that the utility of epigenetics in risk assessment will be determined over the next decade. Studies 
that span the life course are in progress, and there is opportunity for marker validation over longer times, 
although this research would require multiple biological samples from well-characterized large cohorts. 

Transcriptomics 

Transcriptomics can lead to the identification of perturbations in gene expression relevant to lung 
carcinogenesis due to environmental exposures, including exposure to air pollution. Thus, transcriptomics 
is expected to be a key tool in research, for example, for identifying which specific components of an air
pollution mixture are biologically active and might have a role in causing lung cancer. Transcriptomics 
might also help to reveal interactions of mixture components by showing that the overall effect of a mix
ture on gene expression is greater than the sum of gene expression of the individual components. 

Gene-expression changes have been linked to air-pollution exposures in in vitro and animal experi
ments. Specifically, exposure to air pollution leads to increased or decreased expression of genes that are 
relevant to immune or inflammatory actions. Although few observations have been made in humans, 
Wittkopp et al. (2016) performed an exploratory analysis and tested whether gene expression was associ
ated with air-pollution exposures in a Los Angeles area cohort of elderly subjects who were exposed to 
PM25 at an average of 10-12 11g/m3

. The authors found positive associations of traffic-related pollutants 
(including nitrogen oxides and PAH content in PMo2s-2s or PMo2s) with the expression of several candi
date genes, particularly Nrf2-mediated genes, which indicated involvement of oxidative stress pathways. 
A number of genes have been found to be dysregulated by using transcriptomics tools in studying lung 
cancer (see, for example, Amelung et al. 2010). 

Proteomics 

As noted in Chapter 1, proteomics refers to the measurement of the whole compartment of proteins 
in a biological sample with high-throughput techniques. Like transcriptomics, it might be useful in char
acterizing toxicity of individual air-pollution components, identifying interactions of air-pollution com
ponents, and identifying pathways that might be involved in a response to air pollution and possibly relat
ed to lung carcinogenesis For example, the association between long-term exposure to air pollution and 
inflammatory markers was investigated with a proteomic approach (Mostafavi et al. 2015), and immune
inflammatory perturbations were observed at high exposures. Little work has been conducted on the pro
teome in relationship to air pollution. 
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Adductomics 

DNA and protein adducts have long been measured in relation to air-pollution exposure (Demetriou 
et al. 2012; Demetriou and Vineis 2015). Specific adducts, such as PAH-DNA adducts, have been meas
ured. Adductomics is a new approach to identifying exposure biomarkers with a systematic, high
throughput search of all potential adducts resulting from external exposures or internally generated com
pounds. As part of the exposome concept, adductomics typically involves an untargeted investigation that 
analyzes hydrolysis products of albumin by using mass spectrometry. Electrophilic chemicals or their me
tabolites that bind to albumin are also likely to bind to DNA. Thus, protein-based adductomics can poten
tially be used to identify genotoxic, electrophilic components in a mixture. Adductomics might also be 
helpful in refining exposure-response relationships, including the shape of the exposure-response curve 
for lung cancer, because the high sensitivity of adductomics reduces misclassification and uncertainty. 
That research would require repeat samples from prospective cohorts, and one of the pillars of modern 
epidemiology is the availability of large prospective cohorts with multiple samples that create an oppor
tunity to study the stability of signals. Some of the markers integrate exposures over relatively long peri
ods and would thus be useful for exposure estimation. 

Metabolomics 

Metabolomics can be performed on plasma, serum, or urine samples by several methods, including 
high-resolution mass spectrometry coupled to ultra-high-performance liquid chromatography for untar
geted analyses. Metabolic features that characterize exposed groups are identified by multivariate statis
tics with appropriate correction for false discovery rate. Metabolites unique to exposed groups are then 
identified with more targeted investigations. However, metabolomics data are subject to high intraindi
vidual variability, and many metabolites have short lives, which might limit their utility in estimating 
longer-term exposures. Annotation is another limiting factor; researchers are unable to characterize fea
tures detected with, for example, mass spectrometry without additional chemical analyses. In principle 
and with likely future technical developments, however, metabolomics could become a useful tool for 
achieving several goals, as suggested in Table B-3 below: the identification of specific metabolites related 
to mixture components and their interactions, better characterization of exposure by linking metabolites to 
external measurements, and reconstruction of molecular and biochemical pathways, which would con
tribute to mechanistic knowledge and identification of pathways. 

Concluding Remarks 

Early and still evolving findings from epidemiological research that uses -omics techniques are starting 
to suggest that air pollutants might act via pathways that involve inflammation and oxidative stress. In addi
tion, there might be mutational signatures that are characteristic of air-pollution exposure vs, for example, 
smoking, although air pollution and cigarette smoke have several common components, such as PAHs. The 
small samples of early studies, however, do not allow sound quantitative estimation of pathway perturba
tions at low doses. Although the evidence is limited, some consistency is emerging among different -omics 
platforms, such as transcriptomics, epigenomics, and proteomics. The consistency among platforms can be 
investigated by using statistical techniques known as cross-omics (Vineis et al. 2013). The long-term goal is 
to couple external exposome approaches to reduce measurement error at the individual level with a suite of 
-omics investigations that characterize the various steps involved in carcinogenesis by investigating, for ex
ample, mutational spectra, epigenetic changes, inflammation, and cell proliferation in human samples. That 
research is expected to lead to more accurate quantitative risk assessment. 

Overall, -omics technologies will facilitate exploration of all the characteristics of carcinogens and 
the pathways that lead from exposure to diseases. The main challenges are related to the variability of 
measures due to technical reasons and biological intraindividual variation, the long latency of cancer with 
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decades between exposure and disease onset and the multiple steps involved, and the lack of access to 
precursor lesions-there is access only to surrogate tissues, such as blood-to study molecular changes 
that take place in target cells. Regardless of the challenges, the -omics technologies offer opportunities to 
identify critical components of air-pollution mixtures and to refine the exposure-response relationship as 
illustrated in Table B-3. 

Neurodevelopmental Effects and Particulate Air Pollution: 
Determining Whether a Causal Relationship Exists 

Determining whether there is a causal relationship between neurodevelopmental effects and PM is 
potentially of great public-health importance. It has long been known that fetuses, infants, and young 
children are more sensitive than adults to diverse environmental toxicants because of the vulnerability 
accompanying developmental, growth, and maturation processes (WHO 1986; NRC 1993; Anderson et 
al. 2000; Perera et al. 2004; Grandjean and Landrigan 2006). One topic of particular concern is neural 
development. A large body of research has addressed the influences of air pollution on fetal growth, in
cluding head circumference (Vrijheid et al. 2011; Stieb et al. 2012; van den Hooven et al. 2012; Backes et 
al. 2013; Proietti et al. 2013; Smarr et al. 2013). More recently, epidemiologists have become interested in 
potential effects of PM air pollutants because some combustion components of PM, such as PAHs and 
their derivatives, have shown neurodevelopmental toxicity in some experimental and small pathology 
studies (Calderon-Garciduenas et al. 2002; Takeda et al. 2004). In this section, the committee briefly dis
cusses the epidemiological studies that have linked air-pollution exposures to neurodevelopmental effects 
and offers some suggestions on how ES21 and Tox21 tools and methods could be used to strengthen or 
improve the epidemiological studies. The committee notes that epidemiological studies that address neu
ropsychological effects of air pollution have been summarized by Guxens and Sunyer (2012) and Suades
Gonzalez et al. (2015) and are not discussed here. The section concludes with some general considera
tions related to developmental neurotoxicity (DNT) and possible approaches for studying DNT. 

Epidemiological Evidence of Associations Between Air Pollution and Neurodevelopment in Children 

Epidemiological studies have begun to investigate the association between various air pollutants and 
neurodevelopmental effects in children. The characteristics and designs of the key studies are summarized 
in Table B-4. Several small cohort studies in the United States, Poland, and China have shown adverse 
neurodevelopmental effects in children exposed in utero to PAHs (Perera et al. 2006, 2009; Tang et al. 
2008, 2014; Edwards et al. 2010; Lovasi et al. 2014). PAH exposure in the studies was measured through 
short-term ( 48-hour) personal-exposure measurements during pregnancy or as PAH-DNA adducts in cord 
blood. The adverse effects reported were decreases in mental function or IQ and motor developmental 
delays early in childhood, but these effects were not observed consistently at all ages at which the 
children were examined. An additional cohort study in the United States linked adverse neuro
developmental effects (IQ and attention disorders) in children with increases in children's lifetime 
exposure to black carbon, which is related to traffic (Suglia et al. 2008; Chiu et al. 2013); however, only 
in boys was black-carbon exposure associated with attention disorders, and this suggests possible sex
specific vulnerability. A large European study combined six birth cohorts (Guxens et al. 2014) and 
reported that nitrogen dioxide, but not other air pollutants, was associated with delayed psychomotor 
development in children 4 years old and younger; no associations with cognitive or language development 
were seen. In addition, several Asian studies and a Polish study reported associations of different types of 
air pollutants and exposure periods with various developmental outcomes (see Table B-4 below). Most of 
the studies were small, tested children at different developmental ages and for different functions or 
disorders, and measured exposures prenatally or postnatally, focusing on different pollutants and sources. 
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TABLE B-3 Relevant Regulatory Questions and How -Omics Technologies Might Help to Answer Them in the Case of 
Lun Cancera 

Regulatory Question Genomics Epigenomics 

Identifying Critical Air-Pollutions Sources and Components 

Characterize toxicity and 
long-term effects of mixture 
components 

Investigate interaction 
potential of mixture 
components 

Characterizing the Exposure-Response Relationship 

Characterize exposure better 

Identify mechanisms 

Identify groups at greater risk 

-Omics Teclmologies 

Transcriptomics Proteomics Adductomics Metabolomics 

aThis table is related to the current knowledge and uses of -omics in the field of lung carcinogenesis. Assignment of checkmarks in the table is 
likely to change with advances in the science of -omics and in the understanding of lung carcinogenesis. 
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TABLE B-4 Study Design of Epidemiological Studies That Have Investigated Neurodevelopmental Effects of Air Pollution 
Study Characteristics Exposure Details Principal Outcomes Investigated Selected Findings Reference 

N~ 46,039 singleton births Evaluated maternal exposure to air Milestone delays were measured through a Estimated air-pollution exposure during Y orifuji eta!. 2016 
in Japan on January 10-17 pollution related to municipality-level series of questions administered at ages 2.5 gestation was positively associated with 
or July 10-17, 2001 traffic, including PM, N02, CO, and S02 and 5.5 years. Questions were not validated some risk of several developmental 

in the 9 months before birth. Air- or selected from an established scale, but milestone delays at both ages-verbal 
pollution measurements were taken from have been used in previous studies. and fine motor development at age 2.5 
general and roadside stations nationally. years and behaviors related to inhibition 

and impulsivity at 5.5 years. 

N ~ 183 children, 3 years Evaluated prenatal exposure to airborne The Bayley Scales of Infant Development- Prenatal exposure to PAHs of the Perera eta!. 2006 
old, born to black and P AHs, secondhand tobacco smoke, and Revised were used to assess cognitive and mothers was not associated with PDI 
Dominican women in New pesticides; P AHs were monitored during psychomotor development at ages 12, 24, or behavioral problems. However, high 
York, NY, mother-child pregnancy with personal air sampling. and 36 months to generate an MDI and prenatal exposure to P AHs (the upper 
pairs recruited in 1998- corresponding PDI. Behavioral problems quartile of the distribution) was 
2003 Umbilical cord blood was taken at were measured on the Child Behavior associated with lower MDI at the age 

delivery, and maternal blood within Checklist. of 3 years, but not 1 or 2 years. 
2 days postpartum was analyzed for 
cotinine, heavy metals, and pesticides. 

N ~ 249 children, 5 years P AHs were measured in women in The WPPSI-R was used to determine Women who had higher exposure to Perera eta!. 2009 
old, born to black and their third trimester with a personal verbal, performance, and full-scale IQ P AHs during pregnancy were 
Dominican women in New monitoring device during the daytime scores. significantly more likely to have infants 
York, NY, mother-child hours for 2 consecutive days; monitor with lower full-scale and verbal IQ 
pairs recruited 1998-2003. was placed near the bed at night. Pumps scores tested at the age of 5 years. After 

operated continuously during this adjustment for maternal intelligence, 
Note: This cohort is the period, collecting vapors and particles quality of the home caretaking 
same as Perera et a!. 2006. <:: 2.5 11m in diameter. environment, environmental tobacco-

smoke exposure, and other potential 
confounding factors, high P AH levels 
(above the median of 2.26 ng/m3

) were 
significantly and inversely associated 
with full-scale and verbal IQ scores but 
not with performance IQ scores. 

N ~ 326 children, born to P AH exposures were measured with The WPPSI-R was used to assess Prenatal P AH exposure above the Lovasi et a!. 2015 
black and Dominican personal ambient air monitors worn for 2 intelligence and neurodevelopment median was significantly associated 
women in New York, NY consecutive days and placed at the at of age 5 years. Spanish scores were with lower total WPPSI-R and verbal 
in 1998-2006. bedside at night during the third trimester excluded because of difference in the scores. The mean differences were 3.5 

Note: This cohort is the 
of pregnancy. Spanish- and English-language versions. total points and 3.9 verbal points 

between high and low P AH exposure 
same as Perera et a!. 2006. Housing disrepair was self-reported by groups, respectively. 

mothers, and neighborhood characteristics 
were estimated within a 1-km network 
from the prenatal address overlaid with 
data from the 2000 US Census. Indicators 
measured included number of residents 
below the federal poverty line, high-
school diploma or equivalent degree 
attained, and low neighborhood English-
language proficiency. 

..._ 
~ (Continued) 
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TABLE B-4 Continued 
Study Characteristics Exposure Details Principal Outcomes Investigated Selected Findings Reference 

N ~ 214 children born to Exposure to eight P AHs was measured At age 5 years, RCPM were used to assess A higher prenatal exposure (above the Edwards et al. 2010 
women in Krakow, Poland with personal air monitors carried over a a child's nonverbal reasoning ability. median of 17.96 ng/m3

) to airborne 
48-hour period during the second or P AHs (range, 1.8-272.2 ng/m3

) was 
third trimester of pregnancy; monitors significantly associated with decreased 
were kept at the bedside at night during RCPM scores at the age of 5 years, after 
this period. adjustment for potential confounding 

variables. This corresponds to an 
estimated average decrease of 3.8 IQ 
points. 

N ~ 1,257 US children, 6- P AH exposure was based on urinary Outcomes were measured by parental Higher concentrations of fluorine PAH Abid et al. 2014 
15 years old; data collected metabolite concentrations measured in reporting of (1) ever doctor-diagnosed metabolites in children were associated 
from 2001-2004 cycles of the 2001-2002 and 2003-2004 cycles. ADHD (2) ever doctor- or school with 2-fold increased odds of needing 
NHANES. representative-identified LD and (3) receipt SE, somewhat more in males than in 

of SE or early intervention services. females. 

N ~ 202 children in Exposure to BC was estimated with a Cognitive tests were administered at With adjustment for sociodemographic Suglia et al. 2008 
Boston, MA participating model on the basis of child's residence ages 8-11 years and included the factors, birth weight, blood lead 
in a prospective birth during study follow-up. Data collected K-BIT (assesses verbal and nonverbal concentration, and tobacco smoke, 
cohort study (1986-2001) from more than 80 locations in the intelligence) and the WRAML (evaluates BC exposure was associated with 

greater Boston area were used to a child's ability to actively learn and decreases in the vocabulary ( -2.2), 
complete a spatiotemporal LUR model memorize a variety of information). matrices ( -4.0), and composite 
to predict 24-hour measures of traffic intelligence quotient (-3.4) scores of the 
exposure. K-BIT and visual subscale ( -5.4) and 

general index ( -3.9) of the WRAML. 

N ~ 174 children, 7-14 Traffic-related black carbon (BC) The Conners' CPT was used to assess In this population of urban school-aged Chiu et al. 2013 
years old in Boston, MA concentrations were estimated over attention disorders and neurological children, there was a positive 

child's lifetime using a spatiotemporal functioning at ages 7-14 years. association between higher BC and 
Note: This cohort is the model for 24-hour measures ofBC increased commission errors and lower 
same cohort as Suglia based on 6,021 observations from HRT, even after adjustment for child 
et al. 2008 > 2,079 unique exposure days at IQ, age, sex, and other variables. Sex-

82 locations in greater Boston area. stratified analysis showed statistically 
Models took into consideration warm significant associations between BC and 
(May-October) and cold (November- both commission errors and HRT in 
April) seasons. boys, but BC was not significantly 

associated with any outcomes in girls. 

N ~ 9,482 children in six LUR models were used to estimate NOx Cognitive and psychomotor development Air-pollution exposure during Guxens et al. 2014 
European population-based in all study regions and PM with diameter was assessed at ages 1--D years. Different pregnancy, particularly N02 (of which 
birth cohorts: the <2.5, <10, and 2.5-10 Jlm, and PM2.5 neuropsychological tests for cognitive and traffic is a major source) and PM2.5, was 
Netherlands, Germany, absorbance in subregions. Monitoring psychomotor development were associated with delayed psychomotor 
France, Italy, Greece and campaigns took place primarily from administered, including McArthur development in children ( -0.68 points in 
Spain; mother-infant pairs October 2008 to January 2011. Communicative Development Inventory, the global development score) for each 
recruited in 1997-2008. Bayley Scales oflnfant Development I-III 10 }lg/m3 increase in N02). Cognitive 

NOx was measured at least three times a editions, Denver Developmental Screening development measured at similar ages 
week for 2 weeks within 1 year. PM2.5 Test II, McCarthy Scales of General was not related to air-pollution exposure 
absorbance was measured in a subgroup Cognition, and Ages and Stages during pregnancy. 
of regions by reflectance ofPM2.s filters. Questionnaire. 

ED_001449_00000002 



To obtain final analyses, a back-
extraction procedure was used to 
estimate the concentrations during each 
pregnancy of each woman. 

N ~ 520 mother-child pairs Exposure to PM 10 and N02 during The Korean Bayley Scale oflnfant There was a negative association Kim et al. 2014 
in three regional centers in pregnancy was estimated with inverse Development II was used to measure between maternal exposure to PM10 and 
South Korea studied in distance-weighting method. A mini- neurodevelopment progress. Results were MDI and PDI throughout the first 24 
January 1, 2006-December volume air sampler was used to measure expressed as MDI and PDI at 6, 12, and 24 months oflife. Maternal N02 exposure 
31,2008 outdoor ambient PM10; a passive months. was associated with impairment ofPDI 

sampler was used to measure outdoor but not with cognitive function. A 
ambient N02; sampling was performed multiple-linear-regression model 
over 24 hours. showed significant effects of prenatal 

air-pollution exposure (PM 10 and N02) 

on MDI and PDI at 6 months, but no 
significant associations were found at 
12 and 24 months. 

N ~ 533 mother-infant Hourly ambient concentrations of CO, Neurodevelopmental performance was Various indexes of ambient air Lin et al. 2014 
pairs in 29 villages or cities 02, PMw, S02, N02, THCs, and NMHCs measured by parent responses to a pollution, even low sol exposure, 
in Taiwan selected in were measured at the Taiwan Air screening instrument, the TBCS. The scale during pregnancy and up to the age of 
October 2003- January Quality Monitoring Network. Participant consists of four developmental divisions: 12 months were associated with poor 
2004; followed up at 6 and exposure was considered to be the gross motor, fine motor, subclinical neurodevelopment 
18 months. average taken during the period 7 am to language/communication, and social/self- (neurobehavioral effects and poor gross 

7 pm. Air-pollutant exposure for each care abilities. Parents completed two motor development) in early childhood. 
child was measured by linking data from neurobehavioral development scales at 
the air-quality monitoring stations of the each interview; responses consisted of 
town to the exposure period from the never, sometimes, and all the time. Scales 
beginning of gestation to 18 months have good predictive validity, and 
after birth. The gestational period was dimensions correlate with the Bayley 
divided into 3 trimesters, and the Scales of Infant Development. 
postpartum ranges were birth-6 months, 
7-12 months, and 13-18 months. 

N ~ 133 children born Study carried out in an area in China Physical, emotional, and behavioral Increased cord adduct concentration Tang et al. 2008 
March 4, 2002-June 19, with a seasonally operated coal-fired development of2-year-old children was was inversely associated with decreases 
2002 in three Tongliang, power plant. P AH-DNA adducts, Pb, measured with the GDS. Children received in the motor area DQ, language area 
China county hospitals; and Hg were measured in umbilical-cord DQs for each of motor behavior, language DQ, and average DQ after adjustment 
followed for 2 years blood samples collected at delivery. behavior, personal behavior, and social for cord lead concentration, 

HPLC was used to analyze B[a]P-DNA behavior. environmental tobacco smoke, sex, 
adducts in extracted white blood cell gestational age, and maternal education 
DNA. A PE-800 Zeeman atomic level. High cord blood lead was also 
absorption spectrometer with significantly associated with decreased 
background correction system was used social area DQ and average DQ. The 
to measure Pb in samples. frequency of developmental delay 

ranged from 9.1% (social) to 13.6% 
(motor), with an average score of 6.4%. 

(Continued) 
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TABLE B-4 Continued 
Study Characteristics Exposure Details Principal Outcomes Investigated Selected Findings Reference 

N ~ 150 children born Two mini-volume samplers were used at Birth weight, length, and head The power plant was closed between Tang eta!. 2014 
March 4, 2002-June 19, three sites in Tongliang in March 2002- circumference were measured at birth or the recruitment of the two cohorts. 
2002 compared with a February 2003 and in March 2005- more than once after birth if the child was Patterns of developmental delay in all 
cohort of 158 children born February 2006 to collect 72-hour PAH delivered by cesarean section. DQ areas except language were 
March 2, 2005-May 23, samples. improved in the 2005 post-shutdown 
2005; both cohorts Neurodevelopment was measured with the cohort compared with the 2002 cohort. 
consisted of children born Overall P AH concentrations were GDS at the age of 2 years. As above, DQs 
in Tongliang, China. measured by analyzing B[ a ]P-DNA were developed for motor, adaptive, 

adducts in extracted white blood cells language, and social behavior. 
Note: This cohort is the collected from the umbilical cord at 
same as Tang et a!. 2008 delivery and from the mother within 1 

day postpartum. 

Abbrevtatwns: ADHD, attentwn deficit hyperactivity disorder; BC, black carbon; CO, carbon monoxide; CPT, Contmuous Performance Test; 
DQ, developmental quotient; GDS, Gesell Developmental Schedules; Hg, mercury; HRT, hit reaction time; LD, learning disability; HPLC, high
performance liquid chromatography; K-BIT, Kaufinan Brief Intelligence Test; LUR, land-use regression; MDI, mental-development index; 
NHANES, National Health and Nutrition Examination Survey; NMHCs, nomnethane hydrocarbons; NOx, nitrogen oxides; N02, nitrogen dioxide; 
0 3, ozone; P AH, polyaromatic hydrocarbon; Pb, lead; PDI, psychomotor-development index; PM, particulate matter; RCPM, Raven Coloured 
Progressive Matrices; SE, special education; S02, sulfur dioxide; TBCS, Birth Cohort Study Scale; THCs, total hydrocarbons; WPPSI-R, 
Wechsler Preschool and Primary Scale oflntelligence- Revised; WRAML, Wide Range Assessment of Memory and Learning. 
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Thus, additional studies are needed to replicate or confirm some of the reported findings before 
conclusions about associations of air pollution with adverse neurodevelopment outcomes can be drawn 
from epidemiological data. 

The limitations of the epidemiological studies might be addressed by ES21 and Tox21 approaches. 
The following paragraphs summarize the challenges and possible approaches to addressing them. 

:::J Studies testing children's neuropsychological function at different ages are time-consuming and 
expensive, and researchers have to balance various factors, such as the extent and variety of functional 
assessments, cohort size, and length of follow-up. Feasibility and costs are major concerns. Those prob
lems are exemplified in the most recent review of epidemiological studies (Suades-Gonzalez et al. 2015), 
which still did not identify sufficient data to conduct quantitative meta-analyses because of heterogeneity 
in the methods used to assess exposures and outcomes. With respect to cognitive and psychomotor devel
opment, Suades-Gonzalez et al. (2015) decided that for only one exposure (PAHs) were there enough 
high-quality studies available to conclude that there was "sufficient evidence" of an association but not a 
causal relationship. For other air pollutants, modern exposure assessment and modeling-GIS or disper
sion modeling supported by satellite data and ground-level monitoring networks-might facilitate adding 
comparable air-pollution exposure measures to those completed or current expensive human studies of 
neurodevelopment (for example, studies using neuroimaging or extensive functional testing). Eventually, 
the research conducted might provide sufficient sample size, appropriate exposure gradients, and possibly 
information about source-specific or chemical-specific pollution components to generate results that al
low quantitative or causal evaluation of air pollutants and neurodevelopment. 

Key limitations in many DNT studies of air pollution are that they cannot address multiple air
pollutant exposures (mixtures) and most likely can ascertain potential confounders only incompletely, 
given the limited knowledge of social and cultural determinants of neurodevelopment and the strong as
sociation of neurodevelopment with socioeconomic status (SES). GIS could help to disentangle the role 
of SES by allowing, for example, area-level adjustment for correlates of SES. Computer-resource
intensive multilevel spatial modeling in a Bayesian framework might also allow addressing spatially cor
related confounders and pollutant mixtures (Coker et al. 2015, 2016). 

In future studies with smaller samples, it might be possible to use personal air monitoring or bi
omarker approaches that include new sensor technologies if instruments are small and lightweight and if 
measurements are less expensive and thus feasible. The new approaches would allow monitoring over 
extended periods in pregnancy or early life. With the exception of PAH adducts, there are no good bi
omarkers for toxic PM components. Monitoring only particles does not allow assessment of the toxicity 
of their components, and particle composition probably depends on the sources that generate the particles. 
However, combining continuous particle monitoring with repeated collection of relevant biosamples 
(such as maternal and infant blood, urine, and placenta) would also allow the use of -omics tools to find 
new exposure biomarkers in human samples and possibly some biomarkers predictive of outcomes (see, 
for example, Janssen et al. 2015; Saenen et al. 2015). Nontargeted approaches might be useful for identi
fying new biomarkers. 

General Considerations Related to Developmental Neurotoxicity and 
Possible Assessment Approaches 

Historically, establishing causal linkages between neurodevelopmental disorders and environmental 
exposures, such as exposure to air pollution, has been difficult for a variety of reasons, including the need 
for large populations in epidemiological studies, the complexity of capturing the full array of relevant ex
posures before and during pregnancy, the long latency between exposure and effect (particularly for neu
rodegenerative disorders), the lack of defining pathology of some disorders (such as schizophrenia or au
tism spectrum disorder), and inherent limitations of animal models and in vitro assays. Perspectives and 
strategies for assessing DNT more comprehensively have been published by various stakeholders and will 
not be recapitulated here (Aschner et al. 2010; Bal-Price et al. 2015; Felter et al. 2015). This discussion 
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highlights the unique challenges associated with trying to assess DNT and provides some possible ap
proaches to doing so. 

The most notable challenge unique to brain and behavioral targets is the dynamic complexity of the 
developing brain and a fundamental lack of understanding of the etiology of complex behavioral disor
ders, such as intellectual disability and emotional impairment. A disease-centric approach to DNT risk 
assessment is particularly challenging and unlikely to be feasible because many neural disorders, especial
ly neuropsychiatric disorders, are syndromes with a spectrum of hallmark features and lack defining neu
ropathology or clear etiology. Thus, it is not plausible or rational to use a framework that attempts to 
make clear linkages between exposure, DNT mechanisms, and neural disease. Only a few such models 
have been proposed for DNT, and they are all too general (for example, oxidative stress) and do not ex
plain the pathology well. Furthermore, the evidence does not support their acceptance with confidence, 
particularly in the neuroscience community. Instead, risk assessment of and chemical screening for DNT 
will have to be conducted in recognition that in the absence of an extraordinary situation (major accident 
or industrial exposure) clear linkages between exposure and a clinically diagnosed neural disease will be 
challenging. 

Although perspectives on how to improve DNT risk assessment in a regulatory context differ, there 
is general agreement that testing for DNT should focus on evolutionarily conserved, fundamental events 
in neurodevelopment. Those events include neural induction, cell migration, axonal guidance, synapse 
formation and pruning, and apoptosis. Perturbation of the critical events underlies the primary deficits in 
neural disorders. Given that perspective, developmental neurotoxicants would be identified by their ca
pacity to alter the fundamental events, regardless of their specific cellular or molecular mechanisms. Ex
amples in which that perspective has yielded critical insight in connection with air pollution include evi
dence that PM25 induces oxidative stress in homogenates of rat brain regions and disrupts blood-brain 
barrier integrity, thereby enhancing neurotoxicity by activated macrophages and microglia (Fagundes et 
al. 2015; Liu et al. 2015). In mice, developmental exposure to ultrafine particles induced sex-specific neu
rotoxicity (including excitotoxicity and glial activation) and behavioral changes indicative of heightened 
impulsivity and hyperactivity-behavioral changes also associated with exposure of children to air pollu
tion (Allen et al. 2014). Furthermore, in utero exposure to B[a]P during peak periods of neurogenesis in 
mice leads to behavioral learning deficits (McCallister et al. 20 16). 

Rapidly evolving experimental, epidemiological, computational, and toxicity-screening strategies 
are poised to assess neurotoxicity and neuroendocrine disruption better and to fill critical testing gaps. 
Thus, DNT is a topic in which the application ofTox21 approaches would be particularly opportune and 
advantageous. For example, neuroinflammatory responses to air pollution have now been observed in 
human, animal, and in vitro studies (Costa et al. 2014); the results suggest the potential for contributions 
ofTox21 approaches that include the use of animal models and human tissues to assess DNT risks posed 
by air pollution and other exposures. 

Tox21 approaches, including DNT assays, could also be used to address the challenges of identify
ing the air-pollution components that are contributing to neural disease. They could allow rapid testing of 
specific particle neurotoxicity and could help to identify markers of particle sources responsible for great
er toxicity. For example, little is known about what PAHs are present in exposure mixtures; environmen
tal samples can contain hundreds of individual parent or substituted PAHs, and bioactivity and toxicity of 
PAHs depend heavily on chemical structure (Wang et al. 2011 ). New methods could increase our under
standing of the structure and toxicity relationships of neurobehavioral deficits if the full suite of chemicals 
present in samples could be identified and their individual or composite activities understood. Specifical
ly, a suite of in vitro and high-throughput integrated systems could be used to classify PAHs by identify
ing their biological targets or pathways. Those systems could initially use untargeted global assess
ments-such as proteomics, metabolomics, transcriptomics, and epigenomics-to identify activity 
signatures for chemical classification and modeling. Recent studies in zebrafish, for example, evaluated 
and compared the developmental toxicity of 3 8 oxy-P AHs and revealed patterns of responses associated 
with PAH structural features (Knecht et al. 2013). In addition, full-genome RNA-sequence studies in 
zebrafish revealed that even for P AHs that produce toxicity through binding and activation of the AHR, 
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subtle differences in P AH structure yield different overall developmental gene-expression changes and 
indicate that measuring P450 induction as a measure of AHR activation might be problematic (Goodale et 
al. 20 15). Once targets of individual PAHs are identified, Tox21 approaches might be exploited further to 
predict how mixtures of PAH interact to produce neurotoxicity. In vitro functional assays of nervous
system development and function could be implemented to identify chemicals and mixtures that alter end 
points relevant to the nervous system. High-throughput integrated systems, such as zebrafish, might play 
a pivotal role in connecting identified molecular-response data with neurobehavioral measures (Truong et 
al. 2014; Reif et al. 2016). Optimization and scale up of assays that probe more complex behaviors in 
adult zebrafish (discussed in Chapter 3) should provide new avenues to link chemical exposures to func
tionally relevant neurobehavioral end points. 

Despite enthusiasm for improving testing approaches and the emergence of new assays for DNT, 
implementation has been slow. For example, lack of assay coverage in the US Environmental Protection 
Agency's ToxCast for neurotoxicity end points or neuronal targets is a well-recognized limitation. An 
initial attempt to use the ToxCast data to rank tested chemicals in terms of neurotoxicity failed because of 
poor assay coverage of suitable end points and low reliability of existing assays (Filer et al. 2014). Stake
holder meetings and workshops have helped to identify better ways to integrate emerging tools and ap
proaches for DNT but require the inclusion of more neuroscientists and developmental endocrinologists 
to ensure that fundamental pathways in neurophysiology are evaluated and that sexual dimorphisms, re
gion-specific sensitivity, and dynamic critical windows of exposure are considered in assay development 
(Crofton et al. 2014; McPartland et al. 2015). A battery of assays that incorporates the most up-to-date 
neuroscience tools and principles and that provides data relevant for regulatory science and risk-based 
decision platforms will be needed. Identifying and leveraging the most promising approaches and tech
nologies will require active engagement of experts in disciplines outside traditional toxicology, especially 
the neurosciences. Accomplishing a multidisciplinary approach and encouraging a multidisciplinary re
search program for assay development and evaluation can be achieved by coordinating with relevant sci
entific societies and groups that have the needed expertise and with relevant funding agencies, such as the 
National Institute of Environmental Health Sciences. 

How the adult human brain accomplishes complex cognitive and social processing remains mysteri
ous and is the focus of intense research that is using a broad array of tools. Even less is known about 
when key aspects of the complex systems are organized in development or about how sexual dimor
phisms emerge (Reinius and Jazin 2009; Yang and Shah 2014; Hawrylycz et al. 2015; Loke et al. 2015). 
The role of glia is also gaining substantial attention because these cells, particularly astrocytes and micro
glia, appear to play a more fundamental role in neural development than previously thought (Schwarz and 
Bilbo 2012; Schitine et al. 2015). Thus, assessments of neurodevelopmental consequences of chemical 
exposures must be undertaken with the understanding and acceptance of the fact that fundamental under
standing about how the brain develops remains to be achieved, let alone how it enables us to engage in 
uniquely human behaviors and what contributes to the cognitive and social capacities that define our spe
cies. More research is needed on DNT, particularly given its critical consequences and society's high lev
el of concern about its adverse effects. Addressing the challenges associated with DNT will require col
laborative engagement of a broad array of disciplines, from neuroscientists who can address fundamental 
questions about the vulnerability of the brain to exogenous chemical exposures to population scientists 
who can assess the effects of chemical exposures in human populations. 
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Case Studies on Site-Specific Assessments 

As discussed in Chapter 5, understanding the risk associated with a spill or a hazardous waste site re
quires identifying and quantifying the chemicals present, characterizing the chemical toxicity, and estimat
ing the mixture toxicity and associated risk. This appendix provides a case study related to each element. 
The first case study describes approaches for refining exposure estimates for known chemicals at a hypo
thetical site and approaches for identifying the uncharacterized chemicals at the site. The second addresses 
the generation of toxicity data and exposure information on a data-poor chemical after its accidental release. 
The third explores a biological read-across approach for assessing mixtures at a hypothetical site. 

IDENTIFYING CHEMICALS AT A SITE 

For this case study, the setting is a large, historically contaminated site that comprises land and sur
face water near a major population center (for example, Love Canal, the Portland Harbor, or the Houston 
Ship Channel). Recent site characterization has produced an extensive set of environmental monitoring 
data for air, water, and soil at the site. The data cover multiple times and are geographically distributed 
throughout the site. Biomonitoring data are available from serum, urine, and hair in a representative sam
ple of people who live and work in the area surrounding the site. The biomonitoring data are geograph
ically distributed but in some cases limited to single times. 

Targeted analytical chemistry produced concentration data on about 50 toxicologically well
characterized chemicals in environmental media and human blood, urine, and hair (Table C-1 ). The chemi
cals represent four major chemical classes: polycyclic aromatic hydrocarbons, industrial chemicals and sol
vents, plasticizers, and pesticides. Information on metabolism and pharmacokinetics of many of the chemi
cals in rodents and humans is available. Assessments of external exposure of the population around the site 
(children, adults, and senior adults) to each chemical by the oral, dermal, and inhalation routes, where ap
propriate, have been conducted. Nontargeted analyses of the same environmental and biomonitoring sam
ples revealed 5,000 unidentified substances in the environmental media, 3,000 in serum, 2,000 in urine, and 
800 in hair; 300 of the unidentified analytes are common to the environmental media and all biomonitoring 
samples (Figure C-1 ). 

For this case study, the tasks become refining exposure assessment of the known chemicals, translat
ing the external-exposure predictions into internal-exposure predictions, and identifying the unknown 
chemicals at the site. The following sections explore those various tasks. 

Assessment of Known Chemicals and Chemical Mixtures 

The initial step in this case study would be to assemble existing exposure data on the identified 
(known) chemicals and refine their exposure estimates for testing. The relative composition, variability, 
and concentration ranges of the chemicals in the various media would be assessed and quantified, taking 
into account the exposure routes of interest. For example, testing designed to evaluate risks associated 
with dermal exposures might focus on concentrations of chemicals in soil, water, and air that would come 
into contact with skin. Similarly, mixtures that should be evaluated for inhalation toxicity in portal-of
entry tissues (lung tissue) might best be defined by air concentrations of mixture components. Alterna
tively, oral exposures for toxicity testing could initially be defined by the composition and concentrations 
of components of soil and water or other media that might be ingested and absorbed in sufficient amounts 
to influence total exposure. 
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TABLE C-1 Site-Specific Chemicals Identified by Targeted Chemistry Analysis 
Class Rank a Chemical Name 
Polycyclic aromatic hydrocarbons 10 Benzo(B)fluoranthene 

38 Benzo(A)anthracene 

80 Naphthalene 

138 Fluoranthene 

168 Acenaphthene 

185 Dibenzofuran 

255 Pyrene 

High-production-volume industrial chemicals 30 Benzidine 
54 Pentachlorophenol 
84 2,4,6-Trichlorophenol 

98 2,4-Dinitrotoluene 

101 4,6-Dinitro-o-cresol 

137 1 ,2,3-Trichlorobenzene 

142 2,4,5-Trichlorophenol 

172 Cresol, para-

181 Phenol 
195 Cresol, ortho-

206 n-Nitrosodiphenylamine 

260 2,6-Dinitrotoluene 

Plasticizers 58 Di-n-butyl phthalate 

77 Di(2-ethylhexyl)phthalate 

266 Bis(2-ethylhexyl)adipate 

Pesticides 13 DDT,P,P'-

18 Dieldrin 
25 Aldrin 
26 DDD, P,P'-

28 Heptachlor 
34 y-Hexachlorocyclohexane 

37 Disulfuron 
40 Endrin 
41 Diazinon 
44 Endosulfan 
47 Heptachlor epoxide 

53 DDT,O,P'-

55 Methoxychlor 
65 Chlorpyriphos 
89 2,4-Dinitrophenol 

99 Ethion 
103 Dimethylarsinic acid 
131 Azinphos-methyl 

144 Dicofol 
148 Parathion 
155 T rifluralin 
166 Ph orate 
200 Ethoprop 
232 Dimethoate 
244 2,4-D Acid 

246 Butylate 
250 Diuron 
269 Metolachlor 
272 Carbaryl 

aRank is from the ATSDR 2015 Substance Priority List in which rank is based on frequency, toxicity, and potential for human 
exposure at Superfund sites. 
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Common 

Analytes 

Hair 

Samples 

FIGURE C-1 Hypothetical distribution ofunidentified analytes in enviromnental media and biomonitoring samples. 
Analysis revealed a total of 5,000 analytes in the environmental samples, 3,000 in the serum samples, 2,000 in the 
urine samples, and 800 in the hair samples. The four sample types had 300 analytes in connnon. 

Once exposures have been defined, the task is to translate exposures from external measures to in
ternal predictions to appropriate concentrations for in vitro testing with pharmacokinetic models or meas
urements obtained from biomonitoring. The accuracy of the model estimates will be determined partly by 
the amount of information available on absorption, distribution, metabolism, and excretion (ADME) pro
cesses. Cheminformatic and high-throughput systems can provide information on, for example, metabo
lism by hepatocytes, absorption by caco-2 cells, and binding to plasma proteins that could be used to es
timate pharmacokinetic parameters (Wetmore et al. 2012, 2014). Genetic analysis of single-nucleotide 
polymorphisms related to human pharmacokinetics could provide information on variability in pharma
cokinetic parameters in the population of concern. Ultimately, the pharmacokinetic parameters are helpful 
for evaluating the relationships between external and internal exposures and guiding selection of test con
centrations. The data on individual chemical and mixture exposure and the related pharmacokinetic data 
would ideally be used to establish test concentrations or exposures for the appropriate in vivo or in vitro 
test systems that reflect the composition of real-world exposures at the site. 

Assessment of Chemicals of Unknown Identity 

Nontargeted analyses of samples from the site revealed 5,000 unidentified chemicals in the envi
ronmental media, 3,000 in serum, 2,000 in urine, and 800 in hair (Figure C-1). All sample types had 300 
unidentified chemicals in common. One key challenge in nontargeted analysis of complex samples is to 
identify the unidentified chemicals accurately. Without chemical identifications, the ability to quantify 
exposure, conduct toxicity testing, and evaluate the plausibility of exposure-disease associations is ex
tremely limited. To identify unknowns, standard reference materials for industrial and other chemicals 
and their metabolites are needed. Analytical features of the standard reference materials-such as elution 
time, exact mass, isotopic signature, and fragmentation pattern from, for example, gas chromatography 
(GC), liquid chromatography (LC), and tandem mass spectrometry (MS/MS)-can be matched to analyti
cal features in the sample to identify the chemicals of interest. Chemical-identity libraries that contain the 
analytical spectra of reference standards are growing, particularly for endogenous metabolites (for exam
ple, the Human Metabolome Database, HMD), but more progress needs to be made before nontargeted 
analyses can become routine. The following discussion provides approaches for making progress in this 
field. 

Two general approaches-an experimentally driven approach and another driven by cheminformat
ics (Horai et al. 2009; Neumann and Boeker 2010)-have been suggested to overcome the obstacles pre
sented by the lack of chemical-identity libraries. In the experimentally driven approach, chemical-identity 
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libraries similar to the HMD that include exact mass, elution times, isotopic signature, and mass fragmen
tation patterns (Figure C-2) could be created for ToxCast and other chemicals. To support that effort, US 
Environmental Protection Agency (EPA) has obtained authentic chemical standards for thousands of 
ToxCast chemicals and placed them in a chemical repository. Development of a complete chemical
identity library for the ToxCast chemicals (and addition of this information to such databases as the 
HMD) would enable measurements of these chemicals in environmental media and human biofluids. 
However, a major limitation in the experimental approach is the absence of standards for common envi
ronmental degradation products or metabolites that are likely to be found in biofluids. As chemical
identity libraries grow, archived GC, LC-MS, or MS/MS spectra can be searched to make new identifica
tions. 

Nuclear magnetic resonance (NMR) methods present another experimental approach to identifica
tion of unknown chemical features. The methods hold great promise because NMR analysis allows identi
fication and quantitation of chemicals without an authentic standard. A noted limitation of the approach is 
its need for relatively high concentrations of target chemicals in the sample (1 11M; Bingol and 
Briischweiler 2015) and its relatively low throughput. Advanced labeling techniques (Clendinen et al. 
2015) and methods that involve combinations of NMR, MS, and other analytical techniques, however, 
show promise for future applications (Bingol and Briischweiler 2015). 

Ion-mobility spectrometry-mass spectrometry (IMS-MS) analysis is another promising experi
mental approach for library-building and rapid identification of chemical features of unknowns (Ewing et 
al. 2016; May et al. 2016). In IMS-MS analyses, chemicals separate on the basis of their collisional cross
sectional (CCS) area during flow through a nitrogen- or helium-filled tube with a charge separation. Sepa
ration times are in the milliseconds and allow the potential for very high-throughput sample analysis. One 
potential advantage of IMS-MS over other analytical approaches for chemical identification for which 
authentic standards do not exist is that the CCS area can be calculated in silico with good accuracy (2-5% 
error; Paglia et al. 2014). The high throughput of the IMS-MS techniques and the possibilities of in silico 
library-building could produce large libraries of known chemicals, metabolites, and degradation products 
even if the chemical standards are not available. Those libraries could then be used to assign provisional 
identifications or identifications with probability statements. Furthermore, IMS-MS chemical fragmenta
tion patterns can be matched to those in existing databases, such as the HMD, for improved chemical 
identification. 

Elution Time/DriftTime 

Growth in ChemicaiiD Librari 

Feature 
Identification 

FIGURE C-2 GC, LC, and ion-mobility spectrometry-MS/MS platforms allow the use of multiple types of data
including isotopic signature, elution time, fragmentation pattern, ionization source, collision cross-sectional area, 
and physicochemical properties-to identify unknown chemicals. 
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The other general approach is based on cheminformatics and can circumvent the challenges associ
ated with limited chemical-identity libraries and the lack of standard reference materials. Applied in con
cert with emerging analytical chemistry approaches and computational methods, cheminformatics holds 
great potential for rapid identification or classification of unknown analytes. For example, quantitative 
structure-activity relationship methods that compare chromatographic behaviors of unknown analytes 
could be combined with other data to provide predictions about select chemical properties of the analytes. 
Computational approaches based on physicochemical properties have been used to predict elution times 
(Shah et al. 2010; Kangas et al. 2012), MS-MS fragmentation patterns (Heinonen et al. 2008; Wolf et al. 
2010; Perdivara et al. 2013), and CCS area (Paglia et al. 2014). Using one or more of the analytical ap
proaches with other cheminformatic tools for predicting metabolism and environmental degradation 
products (Dimitrov et al. 201 0) might help to create in silico libraries that grow in breadth and accuracy 
and can be used to transition from nontargeted to targeted analysis. 

The approaches described here represent essential methods for making the rapid transition from non
targeted to targeted analysis. For site-specific assessments with many unidentified chemicals, the ap
proaches would provide a means of identifying analytes progressively for later hazard or risk assessment. 
For this case study, the committee assumed that the approaches applied to the environmental media, se
rum, urine, and hair samples would yield a list of 300 chemicals that are found with greatest consistency 
and at the highest concentrations in all samples (Figure C-1 ). Chemicals that are found in environmental 
media and biological samples will constitute a logical choice for targeted toxicity testing because they 
might have a higher exposure potential than chemicals found only in environmental media. 

As the number of identified chemicals increases, the data could be used to identify signatures of ex
posure to chemicals and mixtures. Such efforts would help to strengthen the exposure narrative and iden
tify real-world mixtures for toxicity testing. The approaches for ranking based on hazard and bioactivity 
reported by Rager et al. (20 16) (Figures 2-7 and 2-8) are potentially applicable in some context of com
plex exposures. Other ES21 tools would then be used as needed and as described in Chapter 2 and the 
above section to provide better exposure characterization through a more complete understanding of ex
posure pathways, fate and transport, and biokinetics. 

CHARACTERIZING TOXICITY AFTER A CHEMICAL RELEASE 

This case study considers the environmental release of a chemical that has few toxicity data and ap
proaches for characterizing toxicity rapidly to inform decision-making. 4-Methylcyclohexanemethanol 
(MCHM) was the major component of a chemical mixture that was spilled into the Elk River about 1 mile 
upstream of a water-intake facility for the city of Charleston, West Virginia, in 2014. The immediate pub
lic-health response was a "do not drink" order, but there was not enough information to provide guidance 
on what types of adverse health effects might be expected from MCHM or at what exposure levels. Pri
marily because hazard data were sparse, an acceptable concentration of MCHM in water being consumed 
by the local population and the potential risks associated with exposures to it could not be easily estimat
ed. A few models and data streams that could be used in such situations are described below. The discus
sion provides general guidance but is not intended to be exhaustive. For example, only the exposure sce
nario related to drinking of tap water is presented here. In emergency scenarios, advice would also be 
given on whether people, including children and infants, could bathe in the water and whether the water 
could be used for cooking, washing clothes, and cleaning and provided to pets. Furthermore, although the 
focus is on MCHM, other chemicals at concentrations of at least 1% were present in the spilled material, 
including 4-(methoxymethyl)cyclo-hexanemethanol (4-22%), methyl 4-methylcyclohexane carboxylate 
(5%), 1,4-cyclohexanedimethanol (1-2%), and glycol phenyl ethers (propylene and dipropylene, whose 
concentrations were unknown). 

Measured and model-predicted chemical-property information that is relevant for estimating 
MCHM environmental fate and toxicokinetics and for conducting an exposure assessment can be ob
tained from publicly available databases and software, including EPA's EPI Suite™ program (EPA 
2011), which is primarily used here to obtain chemical property, fate, and bioaccumulation information. 
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MCHM is a relatively small (128.2 g/mol) neutral organic chemical that has a solubility limit of about 
2,000 mg/L and an octanol-water partition coefficient (Kow) of about 350 (EPA 2011). It is a relatively 
volatile chemical (vapor pressure of about 8 Pa); however, its water solubility results in an air-water par
tition coefficient (KAw) of about 0.0003 (EPA 2011). Screening-level evaluative mass-balance fate mod
els that are included in EPI Suite (EPA 2011) indicate that once released to surface water, such as a river, 
MCHM is not distributed significantly from water to air or sediment. The biodegradation half-life in sur
face water is estimated to be about 15 days (EPA 2011). Predicted bioaccumulation factor for MCHM in 
fish is about 20 L/kg (relatively low), and the biotransformation half-life in fish is less than 1 day (rela
tively short). Those screening data indicate low persistence and bioaccumulation of MCHM in the envi
ronment; chemical concentrations in the river and in possible food sources from the river would be ex
pected to decrease relatively quickly. Long-term, chronic exposures to local residents would not be 
expected. More sophisticated and resource-intensive models could be used to provide more refined situa
tion-specific calculations for the expected change in environmental concentrations over time. For exam
ple, modeling tools could be used to estimate the time that it would take for concentrations in the river at 
the water-intake facility to decrease. Similar tools could be applied for the water-distribution system (after 
intake at the treatment facility). 

Measured MCHM concentrations in drinking water in the first 2 days after the spill were about 1-4 
mg/L (Foreman et al. 2015; Whelton et al. 2015). To determine the safety of the water for consumption, 
such sensitive populations as young infants and lactating and pregnant women would need to be consid
ered. The 95th percentile drinking-water intakes by lactating women, pregnant women, and young infants 
are 0.055 L/kg-day (EPA 2011), 0.043 L/kg-day (EPA 2011), and 0.24 L/kg-day (EPA 2008), respective
ly. Given an MCHM concentration of 2 mg/L, the estimated acute (48-hour) intake in drinking water 
would be 0.48 mg/kg-day for the most exposed group, young infants. Lactating women would take in 
0.11 mg/kg-day. Water concentrations in Charleston tap water declined to less than 1 mg/L 5 days after 
the spill and continued to decline to about 0.002 mg/L 3 weeks after the spill (Foreman et al. 2015). Thus, 
the MCHM intake 3 weeks after the spill by the 95th percentile drinking-water consumers would have 
declined to 0.48 11g/kg-day in young infants and 0.11 11g/kg-day in lactating women. The predicted half
life of MCHM in humans is about 2 hours (Arnot et al. 20 14), so internal concentrations are expected to 
decrease relatively quickly after exposure events because MCHM is not persistent or bioaccumulative in 
humans. 

A number of symptoms were reported in the community either through emergency-room visits or in 
follow-up surveillance by the Centers for Disease Control and Prevention and the Kanawha Charleston 
Health Department. Vomiting, nausea, diarrhea, and sore throat were most associated with reported drink
ing of the water, whereas skin irritation and rash were associated with bathing (Whelton et al. 2015). At 
the time of the spill, animal data were available on acute and subacute toxicity, site-of-contact irritation, 
skin sensitization, and genotoxicity, but there was no information on potential developmental toxicity or 
long-term health effects. The information generated after the spill primarily used Tox21 tools described in 
Chapter 3 and provide a good example of how these tools can be used qualitatively to provide support for 
public-health decisions. The following discussion provides several approaches for estimating or evaluat
ing MCMH toxicity. 

A rapid approach for estimating the potential for adverse effects is chemical structural comparison 
with known toxicants. Published methods can be used to determine whether there are reports in the litera
ture on chemicals that have similar structural features. Wu et al. (2013) published a decision tree for de
velopmental toxicity that was based on a chemical structural analysis of about 900 chemicals. The deci
sion tree contained no precedents for developmental toxicity of chemicals that had the structural features 
of MCMH. Although that approach does not provide a definitive answer, it is a rapid means of determin
ing whether a chemical has a signal for developmental toxicity. It is also possible to look for structurally 
similar chemicals in large toxicology databases, such as those amalgamated under EPA's Aggregated 
Computational Toxicology Resource program. In this case, no chemicals that had high structural similari
ty to MCHM were identified. 
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The National Toxicology Program (NTP) undertook a number of short-term assays intended to de
termine whether MCHM has activity against targets of concern (NTP 2016a). The testing included in 
vitro assays in 27 cell types, querying activity on signaling pathways relevant for development, rapid
turnaround assays in Caenorhabditis elegans and zebrafish embryos, and a 5-day toxicogenomics study in 
rats. No signals were generated from any in vitro assays up to relatively high concentrations (almost 100 
11M) or in assays with C elegans or zebrafish, although a minor contaminant of MCHM did have some 
activity in zebrafish embryos at about 100 11M. The toxicogenomics study was used to generate a biologi
cal no-observed-effect level (NOEL) for gene expression that is reported to be in the range of 6-99 
mg/kg-day (the range is attributed to different methods used for data analysis). That screening-level study 
used six doses from 0.1 to 500 mg/kg-day (administered orally) for 5 days and evaluated gene expression 
in liver and kidney. A biological response was reported in liver at 6-99 mg/kg-day with no effect on kid
ney gene expression (NTP 2016b). The acute 95th percentile water-consumption exposure intake rates of 
0.48 mg/kg-day for infants and 0.11 mg/kg-day for lactating women are lower than the NOEL for gene 
expression by factors of about 12-200 and 60-1,000, respectively. The committee notes that longer-term 
exposures were much lower. Because this example did not account for other exposure routes, which could 
add to ingestion exposure, the findings support the do-not-drink order issued for the entire service area 
(Whelton et al. 2015). Data gaps regarding other exposure routes could have been addressed by testing 
gene expression after administering the chemical by other relevant routes or by using physiologically 
based pharmacokinetic models to estimate the contribution of dermal and inhalation exposure to the total 
systemic concentration. Policy on interpreting the data streams will need to be created; this example is 
informative in describing the types of data that can be generated quickly to support risk-management de
ctswns. 

In summary, although the data differed from a standard toxicology evaluation, they were sufficient 
to indicate that MCHM was not structurally similar to known developmental toxicants or genotoxicants 
and that it did not have biological activity consistent with that of a potent developmental or systemic toxi
cant. A few animal studies that reported a sensitive readout (global gene expression) identified an MCHM 
concentration that was without biological effect, and that information supports a NOEL of about 100 
mg/kg-day or somewhat lower, depending on the method of analysis. Exposure estimates derived from 
measurements of drinking water could be compared with the NOEL and other hazard data, and models 
could be used to provide initial indications of the time required for environmental concentrations to de
crease to acceptable concentrations after a spill. 

PREDICTING TOXICITY OF REAL-WORLD CHEMICAL MIXTURES 

Once chemicals at a site or part of a spill have been identified, the first question to address is wheth
er toxicity data on them exist. For some chemicals, there are health assessments, such as those generated 
by the Integrated Risk Information System program, the International Agency for Research on Cancer 
monographs program, and the Report on Carcinogens program. Some assessments might be out of date or 
have notable limitations, so there might be some benefit of using Tox21 tools and approaches described in 
Chapters 3 to produce additional hazard and dose-response data, perhaps focused on previously identified 
end points of concern or to provide missing data on variability. Many chemicals, however, will not have 
been assessed or not have many toxicity data, such as MCHM (described in the case study above). For 
those chemicals, there would be clear cost and time advantages of using Tox21 tools and approaches de
scribed in Chapters 3. For example, the potential for identified substances to pose a human health hazard 
can be estimated quantitatively or qualitatively by chemical structure-activity modeling (Sutter et al. 
2013), by combining structural information and bioactivity profiling (Low et al. 2011, 2013), by assessing 
bioactivity with in vitro assays that represent a wide array of tissues and biological targets (Judson et al. 
2014), by establishing appropriate points of departure followed by in vitro to in vivo extrapolation (Jud
son et al. 2011 ), and by using population-based and other in vitro models to derive chemical-specific vari
ability estimates (Abdo et al. 2015a,b). Although the toxicity evaluation would initially be performed on 
an individual-chemical basis, real-world exposures are to the chemical mixtures that have been detected 
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in environmental samples. Adding complexity to the situation is that many of the chemicals in a mixture 
will not have been identified. This case study provides an approach for investigating the potential hazard 
posed by such mixtures. 

For the toxicity assessment of complex mixtures observed in environmental samples, tissues, and 
biofluids, such as in the first case study described in this appendix, a biological read-across approach 
(Low et al. 2013; Grimm et al. 2016) that relies on bioactivity-profiling data from various in vitro toxicity 
assays, high-content screening assays, and possibly high-throughput genomic analyses could be used to 
probe potential hazards. A biological read-across might be the most expedient approach for identifying 
potential human health hazards posed by the uncharacterized mixtures. Heterogeneity of tissue or organ 
toxicity, interindividual variability, and other factors can be addressed through bioactivity profiling of 
real-world mixtures by using human cell models in monoculture, co-cultures of various cell types, or 
more complex tissue-on-a-chip models. 

Figure C-3 provides an overview of the biological read-across approach. Generally, chemical repre
sentatives of various toxicant classes, such as those listed in Table C-1, should be tested in a panel of in 
vitro assays that will also be used to test the environmental samples to establish the range of responses. 
Likewise, "designed" mixtures can be created-for example, on the basis of chemical-use patterns or oth
er exposure-based data-and tested. The testing will yield a database of the biological effects of persistent 
environmental pollutants from a panel of diverse in vitro assays that can be used to move the unknown 
mixtures into classes of known chemicals or designed mixtures and to conduct the read-across to predict 
potential human health hazards posed by the real-world mixtures as described further below. 

Representative 
Chemicals from 

Read 
across Bioactivity 

"" "' Readout from 
Envlronrnei:ltal 

Sample •••. 

FIGURE C-3 Biological read-across that provides an approach to assessing the hazard posed by complex mixtures. 
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The database of bioactivity readouts from representative chemicals and designed mixtures can be used 
as a training set for the classification models that evaluate differences between chemicals or chemical clas
ses. The results of that activity can then be used to compare (read-across) the environmental mixtures that 
have unknown chemical composition with representative chemicals or designed mixtures. For example, a 
series of machine-learning-based models could be constructed that define biological spaces that separate 
one class from all others (one-vs-all) or separate a single class from another class (one-vs-one). Ultimately, a 
real-world environmental mixture can be profiled in the same assay battery, and the resulting bioactivity 
readout can be used to obtain a quantitative estimate and qualitative response related to whether the mixture 
behaves like a particular toxicant or toxicant class in a specific assay or assay battery. 

Ultimately, high-dimensional in vitro toxicity or transcriptomic data can be used to read-across a 
particular mixture of unknown chemical composition to known reference chemicals or chemical combina
tions and establish a "biological analogue" that consists of a mixture of reference chemicals for which 
existing toxicity benchmarks are available. If the read-across-based mixture is used as a surrogate for the 
original mixture, standard methods for deriving cumulative risk estimates that are based on individual 
chemical exposure estimates and decision benchmark methods can be applied. Although the read-across 
mixture might have a different chemical composition from the real-world mixture, one can assume that 
their biological similarity based on the in vitro toxicity testing is adequate for informing environmental 
decisions. 

Tox21 methods of evaluating mixtures can be used to establish dose-response relationships for vari
ous bioactivity by evaluating serial dilutions of the mixture or extracts. The resulting data can be com
pared with the bioactivity of the samples collected at different locations at the site or adjacent areas or 
with the bioactivity of historical samples from the same site. A challenge in this method is similar to the 
one that exists for extrapolating in vitro exposure to in vivo exposure. In vitro-in vivo extrapolation 
(IVIVE) methods are now used to estimate the daily human oral dose, called the oral equivalent dose, 
necessary to achieve steady-state in vivo blood concentrations equivalent to the points of departure de
rived from the in vitro assays (NRC 2014). IVIVE-adjusted data from in vitro assays can be directly com
pared with exposure information and improve chemical priority-setting by adding a risk context to the 
high-throughput in vitro screening (Wetmore et al. 2013). However, IVIVE research efforts have focused 
on individual chemicals, not on mixtures. A study of comparative analysis of in vitro cytotoxicity of pes
ticide mixtures with potential human exposures is an example of computing oral equivalent doses for 
mixtures by using the reverse-dosimetry approach (Abdo et al. 2015a). In that study, incorporation of do
simetry with in vitro data and conversion to an oral equivalent dose of each mixture allowed a risk
relevant ranking of the mixtures that considered chemical pharmacokinetic behavior; additional exposure 
data were used to adjust the potencies. However, additional experimental and methodological work is 
needed to bridge in vitro testing data on mixtures and exposure estimates. 
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Case Study on Assessment of New Chemistries 

The case study in this appendix describes a hypothetical scenario in which there are three choices of 
"new" chemicals for use in the manufacture of a product that will result in human exposure. Initial testing 
shows that the chemicals in question will most likely leach out of the product and possibly end up in food 
or water that will be ingested by people. In addition, contact with skin during the regular handling of the 
product is a possible route of human exposure. Finally, the chemical might become aerosolized and in
haled by workers in the manufacturing facility or as a result of indoor consumer use of the product. 
Therefore, chemical exposure is possible through inhalation, ingestion, and dermal pathways, and the 
chemical could pose a threat to human health. 

For illustrative purposes, the committee chose to use three related drugs (weak acids)-ibuprofen, 
ibufenac and diclofenac-on which various amounts of in vitro data are publicly available. Table D-1 
provides the chemical structures and selected physicochemical properties. To reflect a possible real-world 
scenario, a key assumption of this case study is that only the in silico and in vitro data presented here are 
available for the screening assessment; in vivo and clinical data are presumed to be "not yet available." 
However, because the adverse effects of the chemicals on people have been studied, one can compare the 
results of the approach with actual human-safety outcomes. The example is intended to illustrate how 
available and emerging screening-level tools and data (read-across, screening-level models, and available 
high-throughput in vitro data) could be applied to inform decision-making and to identify some of the key 
data gaps and sources of uncertainty that are relevant to risk assessments. The committee notes that most 
practical approaches for assessing chemical similarity would exclude diclofenac from this comparison 
because of the chlorine and amine moieties that are not present in the other two chemicals. The committee 
includes it here for the sake of illustration, but it should be noted that there are limits to how dissimilar 
chemicals can be used in a read-across scenario. 

STRUCTURAL ALERTS 

All molecules that contain an arylacetic acid group can undergo acyl glucuronidation, a major meta
bolic conjugation pathway in mammals for chemicals that contain these groups. Acyl glucuronides have 
been implicated-although it is not definitively proved-as a cause of adverse effects in humans because 
they form protein adducts (see Figure D-1) (Shipkova et al. 2003). Common risk concerns are liver injury 
and hypersensitivity reactions (Regan et al. 20 10). The relative reactivity and half-life of the acyl glucu
ronide has been suggested as a differentiating factor between chemicals that cause adverse events and 
ones that are of less concern. Other researchers suggest that arylacetic acids can undergo coenzyme A 
(Co A) conjugation, and interference of the Co A conjugates with lipid metabolism and other cellular pro
cesses can lead to the observed toxicity (Darnell and Weidolf2013). The metabolic scheme might need to 
be confirmed experimentally to reduce uncertainty (Patlewicz et al. 2015). 

Prepublication Copy 203 

ED_001449_00000002 



Using 21st Century Science to Improve Risk-Related Evaluations 

TABLE D lCh - emtca l s tructures an d s 1 e ecte dM easure d d p d' d p an re tete 
. a 

roperttes 

~ 
.OH l(; CH.3 

I 
~ 0 

Structure 

Chemical Ibuprofen Ibufenac Diclofenac 

Molar mass (g/mol) 206.3 192.3 296.2 

log Kow b 3.97 3.35 4.51 

log KAw ' -5.21 -5.33 -9.71 

pKad 4.4 4.4 4.2 

logD (pH 7.4)' 0.45 0.22 1.37 

Air half-life (h) 10.8 12.7 0.78 

Predicted whole-body 3.6 (0.36, low similarity) 2.1 (0.24, low similarity) 14.9 (0.36, low similarity) 
biotransformation 
half-life (h) (chemical 
similarity score) 

aPhystcochetmcal properttes are from EPA's EPI Smte™ (EPA 2011) and ACD Labs (ACD 2015). The whole-body 
biotransformation half-lives shown here are predicted from structure by using a screening-level quantitative struc
ture-activity relationship (QSAR) model (Arnot et al. 2014a). Various methods can be used to detennine the ap
plicability domain of a QSAR prediction. Here, the chemical similarity score is a measure of the similarity, in struc
ture and properties, of a predicted chemical to chemicals in the training dataset on the basis of a nearest-neighbors 
approach (Brown et al. 2012). The three chemicals have similar molar mass and partitioning and dissociation prop
erties, and absorption efficiencies are expected to be similar in the chemicals but different for each exposure path
way. 
blog Kow (or logP) is the log10 of the octanol-water partition coefficient of the neutral species. 
clog KAw is log10 of the air-water partition coefficient of the neutral species. 
dpKa is the log10 of the acid dissociation constant. 
elogD is the log10 of the distribution coefficient of neutral and ionic species between octanol and water at pH 7 .4. 
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FIGURE D-1 Metabolism of 1-0-~-glucuronide. Source: Stepan et al. 2011. 
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IN VITRO DATA 

To ensure data consistency among the chemicals in question, in vitro data were gathered only from 
the ToxCast Web site, and they are summarized in Table D-2 (EPA 2016). Only assays that yielded activ
ity below a 10 11M threshold are considered because they constitute 20% of the observed assay activity for 
diclofenac and would most likely be the cause of the toxicity used to set assay doses. It is important to 
note that the assays used in the ToxCast program do not represent the entire spectrum of biological pro
cesses that might be relevant to human health (that is, all possible adverse effects of exposure to chemi
cals); therefore, there are likely to be gaps in knowledge of how the three chemicals would interact in a 
biological system. To give some context to the values in Table D-2, diclofenac was tested in a zebrafish 
toxicity screen and had a lowest effect level of 64 11M (Truong et al. 20 14). 

Data on ibufenac are not available, but given its structural similarity to ibuprofen and comparable 
physicochemical properties, one would expect ibufenac to have an in vitro activity profile similar to that 
of ibuprofen. 

Suppression of Prostaglandin Synthesis 

Diclofenac is a potent inhibitor of cyclooxgenase 1 and 2 (COXl and COX2), and inhibition of 
these enzymes can decrease prostaglandin biosynthesis (Vane 1971). Decreased secretion of prostaglan
din E2 (PGE2) was observed in the Bioseek platform. Ibuprofen is a weak nonspecific inhibitor of COXl 
(IC50 , about 18 11M) and COX2 (IC50, about 370 11M) (Noreen et al. 1998) but also showed a similar sup
pression of PGE2 in the BioSeek platform. PGE2 is linked to suppression ofT -cell receptor signaling and 
inflammation responses (Wiemer et al. 2011). However, PGE2 is also a vasodilator, so suppression of its 
secretion might lead to an increase in blood pressure and to cardiac toxicity (Strong and Bohr 1967). 

TABLE D-2 Data from In Vitro Assay in Which Chemicals Had Activity Below 10 11M 
Assay Activity Platform Diclofenac AC 50 (JlM) Ibuprofen AC 50 (JlM) 

Decrease in interleukin 8 (IL-8) 

Decrease in matrix metalloproteinase-1 (MMP-1) 

Suppression of prostaglandin E2 secretion (PGE2) 

Inhibition of cyclooxygenase 1 (COX!) 

Inhibition of cyclooxygenase 2 (COX2) 

Increase in cell proliferation 

Binding of peroxisome proliferator-activated receptor 
gamma (PPAR-y) 

Decrease in collagen III 

Decrease in interleukin 6 (IL-6) 

Increase in thrombomodulin 

Activation of pregnane X receptor (PXR) 

Decrease in low-density lipoprotein (LDL) receptor 

Increase in macrophage colony-stimulating factor (M-CSF) 

Decrease in monocyte chemotactic protein 1 (MCPl) 

Activation ofPP AR -y 

Activation of glucocorticoid receptor (GR) 

BioSeek 

BioSeek 

BioSeek 

NovaScreen 

NovaScreen 

BioSeek 

NovaScreen 

BioSeek 

BioSeek 

BioSeek 

Attagene 

BioSeek 

BioSeek 

BioSeek 

Attagene 

NovaScreen 

Activation of estrogen receptor element (ERE) Attagene 

0.010 

0.163 

0.215 

0.523 

26.108 

4.742 

7.438 

7.704 

8.256 

8.671 

Source: Data from PubChem. Available at https://pubchem.ncbi.nlm.nih.gov/. 
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Drugs that inhibit COXl or COX2, such as celecoxib and rofecoxib, have been linked with causing 
cardiovascular events (Johnsen et al. 2005), and rofecoxib, a selective COX2 inhibitor, was withdrawn 
from the US market after being linked to heart attacks and strokes. Inhibitors of COXl have been linked 
to causing ulceration and bleeding in the gastrointestinal tract as a result of suppressing the secretion of 
the protective prostaglandins PGE2 and PGI2 (Stileyman et al. 2007). Inhibitors ofCOXl might also affect 
renal function by changing the role of prostaglandins on renal hemodynamics and glomerular filtration 
rate (GFR) (DuBois et al. 1998; Morita 2002). 

Diclofenac and ibuprofen increase thrombomodulin (TM) in the BioSeek platform. TM is a cell
surface receptor for thrombin on endothelial cells that is involved in blood coagulation (Gerlitz et al. 
1993). Increases in TM might increase clotting times but similarly reduce the risk of stroke and myocar
dial infarction (Esmon et al. 1982). 

The low-density lipoprotein (LDL) receptor mediates the endocytosis of LDL. The accumulation of 
LDL in the blood is involved in the development of atherosclerosis, which is the process responsible for 
most cardiovascular diseases (Hobbs et al. 1992). A decrease in the LDL receptor might lead to an in
creased risk of cardiovascular events in people who are predisposed to atherosclerosis or who have cardi
ovascular conditions. 

Liver Effects 

Diclofenac is shown to increase the activity of the pregnane X receptor (PXR). PXR is a nuclear re
ceptor that has important roles in integrating pathways related to fatty acid, lipid, and glucose metabolism 
(Wada et al. 2009). It also senses the presence of foreign substances and responds by upregulating pro
teins involved in their oxidation and others involved in their clearance (Kliewer 2003), and it is a tran
scriptional regulator of the cytochrome P450 gene CYP3A4, a major metabolizing enzyme for many 
drugs that is highly expressed in the liver. 

Both diclofenac and ibuprofen activate the peroxisome proliferator-activated receptor gamma 
(PPAR-y) that regulates fatty acid storage and glucose metabolism, although only at relatively high con
centrations in the case of ibuprofen. The genes activated by PPAR-y increase lipid uptake and adipogene
sis by fat cells (Zou et al. 2016). PPAR-y agonists have been used in the treatment of hyperlipidemia and 
hyperglycemia and therefore might induce hypoglycemia in healthy subjects (Spiegelman 1998; Rangwa
la and Lazar 2004). Some drugs that were designed to activate PPAR-y have been linked with hepatotoxi
city (troglitazone: Watkins 2005), cardiovascular events (rosiglitazone: Singh et al. 2007), and an in
creased incidence of in bladder cancer (pioglitazone: Ferwana et al. 2013). However, no direct link has 
been established between the activation ofPPAR-y and those adverse events. 

Immune-Response Effects 

Diclofenac and ibuprofen have effects on various cellular processes that are involved in inflamma
tion and tissue repair. For example, diclofenac decreases the expression of monocyte chemotactic protein 
l (MCPl). MCPl promotes movement of monocytes, memory T cells, and dendritic cells to sites of 
inflammation (Mukaida et al. 1998; Xue et al. 2015). 

Similarly, diclofenac is an agonist of the glucocorticoid receptor ( GR), which is expressed in almost 
every cell in the body and regulates genes that control development, metabolism, and immune response 
(Rhen and Cidlowski 2005; Lu et al. 2006). The activated GR complex prevents the movement of tran
scription factors from the cytosol into the nucleus, resulting in changes in expression of nuclear anti
inflammatory proteins and cytosolic proinflammatory proteins. 

Ibuprofen decreases the secretion of Interleukin 8 (IL-8) as measured in the BioSeek platform. IL-8 
is a chemokine that is produced by macrophages and other cell types, such as epithelial cells, airway 
smooth muscle cells (Hedges et al. 2000), and endothelial cells. IL-8 induces chemotaxis in neutrophils 
and causes them to migrate toward sites of infection and promotes phagocytosis at the infection site. It is 
also a potent promoter of angiogenesis and an important mediator of the immune reaction in the innate 
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immune system response. Ibuprofen decreases the secretion of IL-6, which acts as a pro-inflammatory 
cytokine and an anti-inflammatory myokine (Schobitz et al. 1994). 

HAZARD IDENTIFICATION 

On the basis of the available in vitro data, structural comparisons, and knowledge of structural 
alerts, a key safety concern about all three chemicals would be liver injury through the formation of reac
tive acyl glucuronides or acyl coenzyme A conjugates that would cause tissue damage and impaired organ 
function. Relative reactivity of the acyl conjugates would play an important role in determining the risk of 
liver injury. Chemicals that have alkyl substitutions at the a-carbon atom have been shown to have lower 
reactivity with protein nucleophiles; this suggests that inherent electronic and steric effects affect the 
overall rate of acyl glucuronide rearrangement (Stepan et al. 2011) and so could have a profound effect on 
the reactivity of the conjugates in the case of ibuprofen (Wang et al. 2004; Walker et al. 2007; Baba and 
Yoshioka 2009). The risk of liver injury could be increased by induction of cytochrome P-450s through 
activation ofPXR and by lipid dysfunction as a result of activation ofPPAR-y. 

Cardiovascular toxicity in the form of increased blood pressure and increased clotting times and re
nal damage or gastrointestinal bleeding caused by the suppression of prostaglandin secretion are also of 
concern with diclofenac and ibuprofen and by inference, ibufenac. 

As discussed in Chapter 3, for inhibitors of G-protein-coupled receptors, the anticipated pharmacolog
ical response is often observed in vivo at plasma concentrations up to 3 times the measured IC50 of the 
chemical in question (McGinnity et al. 2007). As a general rule of thumb, a 100-fold difference between the 
measured IC50 or the inhibition constant in a cell-free assay and the circulating plasma Cmax free 1 concentra
tion could be considered to be adequate to pose minimal risk of toxicity from a pharmacological interaction. 
It is worth noting that for more phenotypic cellular responses, such as those measured by the BioSeek plat
form, more research is required to establish an appropriate translation from in vitro to in vivo. 

EXPOSURE ASSESSMENT 

In this hypothetical case study, the three chemicals of interest have not been used in commercial 
products; therefore, there are no monitoring data, and there are no emissions and use data on which to 
formulate a typical risk-based evaluation. However, the available premarket toxicity or bioactivity data 
identified above can be used to develop parameters for exposure models that can "back-calculate" the 
rates of chemical use for various scenarios that correspond to specific hazard thresholds. The selected 
threshold for such simulations could be a concentration from a bioassay in the case of ibuprofen or diclo
fenac or a read-across value in the case of ibufenac determined from in vivo, in vitro, or computational 
methods or a no-effect threshold method, such as one that uses a threshold of toxicological concern. 

The general exposure-assessment approach outlined here is analogous to the critical-emission-rate 
concept that has been applied in ecological assessments (Arnot et al. 2006) and to concepts applied in re
verse toxicokinetics that is used to calculate intake rates expressed as oral equivalent doses (OEDs; 
mg/kg-day) from the in vitro testing data (Rotroff et al. 2010)_2 In the present case, toxicokinetic models 
are combined with indoor-fate models to back-calculate the rates of chemical use that correspond to illus
trative exposure scenarios. The simulations can consider various assumptions and contexts for exposure 
and chemical or product scenarios. The exposure models used in such simulations can vary in complexity 
according to the amount of data needed to satisfy all the parameter requirements. In that regard, tiered 
modeling strategies might be helpful. 

1
Cmax free is the maximum measured or observed concentration of the fraction of the chemical that is unbound to 

plasma proteins. 
2The OED is the chemical intake rate that corresponds to an assumed steady-state blood concentration related to 

the in vitro bioactivity. 
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In this example, a one-compartment, whole-body toxicokinetic model that considers primary routes 
of exposure and intake (dermal, ingestion, and inhalation) and routes of elimination (for example, exhala
tion, renal excretion, biotransformation, egestion, and desquamation) is linked to a representative indoor 
environment (Arnot et al. 20 14b) to back-calculate the rates of chemical use for three hypothetical expo
sure scenanos: 

Scenario 1. The chemical is released to air in a defined indoor environment. Exposure pathways 
include inhalation, dermal permeation (from passive diffusion in air), and nondietary ingestion (from 
hand-to-surface and surface-to-mouth contact). 

:::: Scenario 2. The chemical is applied directly to skin and assumed to be left on indefinitely. Expo
sure pathways include dermal permeation and inhalation (from volatilization of the chemical from dermal 
application). 

:::: Scenario 3. The chemical is ingested. 

Simplifying assumptions are steady-state calculations and no charged species (that is, no explicit 
calculation for charged species; only the neutral form is simulated). The latter assumption is similar to 
recent hazard and risk-based calculations that used ToxCast data in which the potential for chemical dis
sociation was ignored; that is, acids and bases were treated as nondissociating neutral organics (Rotroff et 
al. 2010; Wetmore et al. 2012; Shin et al. 2015). 

The first step is to translate the in vitro bioassay concentrations (Cin vitro) that correspond to the ob
served bioactivity to in vivo concentrations (Cin vivo). Here, the committee uses the same assumptions as in 
recent applications of ToxCast data for OED calculations: Cn vivo, blood = Cn vitro (Rotroff et al. 2010; 
Wetmore et al. 2012; Shin et al. 2015). However, more explicit calculations should be used to account for 
differences in the in vitro and in vivo systems; for example, free dissolved concentrations rather than as
sumed nominal in vitro concentrations could be used (see discussion in Chapter 2). The steady-state vol
ume of distribution is assumed to be 0.5 L/kg (35 L) for the three chemicals to relate blood concentrations 
to whole-body concentrations. Models for volume of distribution and other methods to address differen
tial concentrations among and within tissues could be considered. The lowest AC50 from the available 
ToxCast assays is selected as the hazard threshold on which to base parameter values for the exposure 
model. That value for ibuprofen and ibufenac is 0.002 11M, and the selected threshold for diclofenac is 
O.Ol11M (see Table D-2). 

The second step is to select the parameters needed for the exposure models to calculate chemical 
fate in various environments. For the sake of illustration, the committee assumes an adult human in a sin
gle room, although infants and children have greater breathing rates relative to body weight; the evalua
tive model requires the following chemical-specific information: Kow, KAw, and degradation half-lives in 
air (see Table D-1). Quantitative structure-activity relationship (QSAR) models are used here to predict 
whole-body biotransformation half-life data. Half-lives could also be determined by scaling in vitro assay 
data derived from hepatocytes to liver (see, for example, Rotroff et al. 2010) or whole-body half-life es
timates. In addition, hepatic, renal, or other compartment-specific QSAR models could be used to provide 
parameter values for pharmacokinetic models that are used for exposure assessment. Ideally, multiple 
lines of evidence (for example, various measured and predicted estimates) will show concordance in key 
information used in the model simulations (chemical partitioning properties and reaction half-lives), and 
this concordance will foster confidence in the assessment results. If chemicals are shown to have high 
environmental persistence, adding far-field human-exposure models to the assessment is warranted to ac
count for possible far-field exposure pathways (chemical dispersed and diffused into food and water). 

RISK CHARACTERIZATION 

The results of the back-calculation simulations are summarized in Table D-3. The calculations yield 
the indoor air release (Scenario 1), application (Scenario 2), and ingestion (Scenario 3) rates in milligrams 
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TABLE D-3 Indoor Release (Scenario 1), Application (Scenario 2), and Ingestion (Scenario 3) 
Rates (mg/d) Corresponding to Selected In Vitro Bioactivity Data. 
Chemical Scenario 1: Release to Indoor Air Scenario 2: Application Directly to Skin Scenario 3: Ingestion 

Diclofenac 10 1.1 

Ibufenac 

Ibuprofen 

1.8 

1.9 

0.15 

0.16 

0.14 

0.13 

0.08 

per day corresponding to the selected in vitro bioactivity-assay data (assumed threshold values). The re
sults could be used for interim guidance on use scenarios for each chemical and for comparative analyses 
between the three candidate chemicals. If one assumes that all three chemicals are used in the same quan
tity, the chemicals and scenarios with the lowest rates correspond to the greatest potential to achieve the 
in vitro bioactivity threshold. For example, for diffuse release to air in an indoor environment (Scenario 
1 ), diclofenac shows the highest emission or release rate and, so could pose the lowest potential concern 
of the three chemicals. Of the three exposure scenarios, Scenario 3 results in the lowest use and applica
tion rates for all chemicals. Overall, the ranges of values are not large because the chemicals have similar 
properties for partitioning, reaction, and bioactivity (that is, the same bioactivity value is used for ibu
profen and ibufenac on the basis of structural read-across). 

The values in Table D-3 do not show the uncertainty in the calculations and do not account for inter
individual variability in the pharmacokinetics and pharmacodynamics that one would expect in a large 
diverse population. The results of this example are illustrative, but the general concept can be helpful in 
determining putative use and release scenarios for premarket chemicals. The application of exposure 
models to back-calculate emission and use rates corresponding to a toxic threshold or bioactivity can also 
be useful for evaluating commercial chemicals when emission and use rates are unknown or highly uncer
tain. Ultimately, confidence in the calculated emission and use rates depends on the confidence in and 
suitability of the toxicity (threshold) data and the exposure-model estimates. For the three chemicals in 
this example, measured volumes of distribution are about one-third to one-half the assumed values, and 
half-lives in adults are one-seventh to one-half the values used in this premarket assessment (Obach et al. 
2008). For risk-based decision-making, additional analyses for various life stages and alternative use sce
narios should be considered as warranted. 

To put the exposure estimates in Table D-3 into context, the typical over-the-counter medicines that 
contain ibuprofen recommend an oral dose of 200-400 mg every 4 hours with a maximum dose of 1,200 
mg in any 24-hour period for persons over 12 years old.3 However, doctors can prescribe ibuprofen to be 
given orally at up to 3,200 mg/day in doses of up to 800 mg at any one time.4 Similarly, ibuprofen has 
been approved in Europe for administration to children 3 to 6 months of age at a starting dose of 50 mg 
taken orally three times a day. Ibuprofen is contraindicated in pregnant women in their third trimester, and 
doctors recommend that women during the first 6 months of pregnancy not take it, if that is possible. 

Diclofenac is approved for use by prescription, and the maximum recommended daily oral dose is 
150 mg in adults; it is not recommended for use in children under 12 years old. It is also contraindicated 
for use by pregnant women. Ibufenac was withdrawn from the market because of severe hepatotoxicity 
and jaundice in patients taking the drug. At the time, the maximum recommended daily oral dose of 
ibufenac was 750 mg. 

In Europe, both ibuprofen and diclofenac were approved for use as a topical gel (ibuprofen, 5% w/w 
gel; diclofenac, 2.32% w/w gel). A maximum daily application of the diclofenac gel was 8 g, which is 
equivalent to 160 mg of the active ingredient. Similarly, the recommended application of the ibuprofen 
gel was up to 125 mg, four times a day, which is equivalent to 25 mg of the active ingredient. However, 

3See https://www.medicines.org.uk/emc/medicine/15681. 
4See http://www.accessdata.fda.gov/drugsatfda _ docs/anda/200 1/76-112 _Ibuprofen. pdf. 
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only 22% of the dose is absorbed through the skin. Compared with the oral route of administration of ibu
profen, the plasma exposure is considered to be much lower and unlikely to cause systemic side effects. 

The estimated oral and dermal exposures in the present example would be substantially below the 
therapeutic doses for most populations, including children. However, it should be noted that at therapeutic 
doses, some side effects and adverse events are observed with various, albeit relatively low, frequencies 
that might not necessarily be considered tolerable in an environmental or occupational risk assessment in 
which long-term, low-level exposures of a broad population demographic have to be considered. Similar
ly, conclusions cannot be drawn at this time about whether the estimated doses would ensure the protec
tion of the most sensitive group-pregnant women. 
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Appendix E 

A Bayesian Example: Predicting Dose-Response Relationships 
from High-Throughput Data and Chemical Structure 

This appendix illustrates the use of Bayesian methods to address a common problem in the analysis 
of high-throughput data that have relatively large measurement error for the purpose of characterizing 
dose-response relationships. Bayesian methods can be particularly useful for synthesizing data and 
quantifying uncertainty. To illustrate the utility of Bayesian methods for datasets that have diverse 
features, the committee provides an analysis that links two types of data that are captured in two distinct 
datasets. The first dataset contains measurements of dose-response relationships of 969 chemicals on one 
specific end point related to the activation of the nuclear pregnane X receptor (PXR) pathway. PXR is 
involved in the sensing of and initiation of metabolism in response to xenobiotics that enter the body and 
has a role in lipid homeostasis. Activation of the PXR pathway is associated with beneficial and injurious 
processes, and measurements of the activation of PXR provide information about the biological activity 
of a chemical. The data on PXR activation were taken from the US Environmental Protection Agency 
ToxCast Phase II data in the AttaGene test system, which uses a HepG2 human liver hepatoma cell line to 
measure transcription factor activity through gene expression (Judson et al. 201 Oa,b ). The second dataset 
contains information about the structures of the tested chemicals. It characterizes each chemical structure 
according to 39 features, which are the major principal features extracted from 770 chemical descriptors 
produced by the Mold2 program (Hong et al. 2008). The features describe the structure of each of the 969 
chemicals in the dataset. The exercise involves the quantitative structure-activity relationship (QSAR) 
task of relating chemical structure to a dose-response curve. The information can be used to reduce the 
uncertainty in the dose-response relationship for PXR activation measured for a chemical and to predict 
the dose-response relationship for an untested chemical. 

The task of relating chemical structures to dose-response curves is challenging because of the large 
number of potentially relevant chemical features and the lack of prior knowledge relating the features to 
the dose-response curves for the outcome being studied (PXR activation). Simple statistical QSAR 
models that do not allow for interactions among the structural features are expected to have poor 
performance and to underestimate the uncertainty in the prediction. In contrast, more complex statistical 
approaches, such as flexible Bayesian models, allow relationships between different types of data to be 
unknown beforehand while borrowing information and allowing learning of lower-dimensional structure. 
By fitting a single Bayesian hierarchical model to the entire set of chemical-structure descriptors and 
dose-response curves, the model can adapt the width of the uncertainty bands accordingly and accurately 
reflect the scope of available information. This full Bayesian approach thus extends the standard QSAR 
concept of domain of applicability and provides flexible and adaptive measures of uncertainty. 

Figure E-1 shows the raw dose-response data for PXR activation by the chemicals under 
consideration. As expected for so many chemicals that have broadly different chemical structures, the 
dose-response relationships are highly variable. To predict dose-response values of a new chemical only 
on the basis of information available on its chemical structure, it is important to predict the dose-response 
curve with a good appraisal of the uncertainty in the prediction. The accuracy of a prediction depends 
partly on whether a chemical in the training dataset is similar in structure to the new chemical under 
consideration. 
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FIGURE E-1 Dose-response records of PXR activation for 969 chemicals represented in the AttaGene ToxCast 
Phase II data. Dose is presented as concentration (!lM) and response as fold increase or decrease in transcription. 

To capture nonlinear relationships between dose and response and how the shapes of the 
relationships are associated with different chemical structures, two assumptions are made: that each dose
response curve is continuous (that is, no "jumps") and that when two chemicals are structurally alike 
(defined by a distance metric) their dose-response curves are similar. 

Nonparametric Bayesian approaches provide a convenient framework for applying the two 
assumptions for curve estimation. Specifically, the dose-response curves are allowed to be completely 
unknown instead of our assuming that the curves follow a particular parametric form, such as a Hill 
function. That is accomplished by choosing a prior probability distribution for the entire curve. There is a 
rich literature on such priors; the Gaussian processes (GPs) provide a commonly used choice that is 
routinely used for many applications. For example, GPs are used routinely in epidemiological studies that 
collect information on spatial locations to incorporate "random effects" that characterize unmeasured 
spatially indexed covariates, which might act as confounders. 

In the present setting, a GP prior is chosen that allows the dose-response curves to change flexibly 
according to chemical dose and chemical-structural features. Under the Bayesian nonparametric model 
used, two response measurements are assumed to be highly correlated a priori when the doses are similar 
and the chemical structures are similar, and the correlation gradually decays as doses and structural 
features move farther apart. The GP prior is chosen to allow wide uncertainty in the unknown curves 
before including information in the database. If one generated samples from the prior, the credible bands 
(Bayesian versions of confidence bands) would be wide. However, if the prior distribution is updated with 
information in the full dataset (not just for a single chemical but for all 969 chemicals), a much more 
accurate estimate of the curve and narrower credible bands are obtained. 

Figure E-2 shows, after fitting of the model, the estimated dose-response curve and 95% credible 
bands for one chemical with the observed PXR dose-response data on that chemical. The figure shows 
that the estimated curve provides a good fit to the data with narrow uncertainty bands. The estimated 
curve differs somewhat from that obtained by estimating the dose-response curve nonparametrically on 
the basis of data only on that chemical (not shown); in particular, the uncertainty bands are narrower, and 
the curve is shifted slightly from a simple interpolation of the means at each dose. Those properties reflect 
the borrowing of information on chemicals that have related structures. 
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FIGURE E-2 Estimated dose-response curve (solid line) for PXR activation and 95% credible interval (dashed 
lines) for one chemical. The credible interval is for the mean curve and so is not expected to enclose most of the data 
points (circles). The estimated dose-response curve is based on the full QSAR and PXR datasets for 969 chemicals 
in addition to the data points shown. Dose is presented as concentration (!lM) and response as fold increase in 
transcription. 

In addition to improving estimation of the dose-response curve for chemicals on which there are 
direct dose-response data, the approach can be used to predict dose-response curves for chemicals on 
which there is information only on structural features. For a chemical that has a known structure but lacks 
dose-response data, the actual experimental data can be replaced with a model-based statistical 
prediction. That prediction will be more accurate for chemicals that are structurally similar to chemicals 
in the database. 

To illustrate the performance of the Bayesian modeling, the committee used data on 800 chemicals 
as training data on which to base the relationships between chemical structure and PXR dose-response 
relationship by fitting a Bayesian hierarchical model. The committee set aside the structure and PXR 
dose-response data on the remaining 169 chemicals. To illustrate predictive accuracy, the committee then 
compared the predicted curves and credible bands with the held-out data. 

Figure E-3 shows predicted PXR dose-response relationships for two chemicals drawn from the 169 
chemicals that were nt used in the development of the Bayesian predictive model. Thus, the data points 
shown in the figure were not used in predicting the dose-response curve and estimating the uncertainty 
bands. Note also that the uncertainty bands are wider than those shown in Figure E-2, as expected because 
the bands in Figure E-2 include direct observations of the dose-response curve, and the dose-response 
prediction in Figure E-3 bases the estimated relationship only on chemical-structure information. For one 
chemical, shown first in Figure E-3, there is not a strong observed relationship between chemical dose 
and PXR activation, and the predicted dose-response relationship accordingly reflects a lack of clear 
dose-response, at least at lower doses. The dose-response relationship for the second chemical is more 
defined, as are the direct observations of the dose-response relationship that were not used to create the 
curve shown. The curve and confidence bands provide a relatively good fit to the observations. 

Although Figure E-3 shows only two chemicals for illustration, good performance was observed 
across the 169 "test" chemicals. In cases in which the estimated dose-response curve had wide uncertainty 
bands indicating uncertainty in the prediction, the bands were wide enough to contain the curves 
providing a good fit to the observed data on the chemical. 
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FIGURE E-3 The predicted dose-response curves (solid line) and 95% credible intervals (dashed lines) for PXR 
activation for two chemicals. Dose is presented as concentration (!lM) and response as fold increase in transcription. 
The predictions, based only on chemical structures, match the observed responses (circles) well. That is, data on the 
chemicals shown were not used to build the Bayesian model used to make the predictions. 

This example illustrates the utility of Bayesian methods for data integration. Primary advantages are 
flexibility, the ability to borrow information from different data types, and uncertainty quantification. The 
committee used a nonparametric Bayesian approach with a GP prior; there is an increasing literature on 
applying similar approaches in a rich variety of applications, and there are many packages for routinely 
fitting GP-based models in practice (Vanhatalo et al. 2013). As illustrated in this example, flexible 
Bayesian hierarchical modeling avoids overly restrictive parametric assumptions that might not be 
justifiable biologically while allowing incorporation of information from different data sources 
adaptively. In this context, adaptively means that one learns the similarities in the data sources and how 
much it makes sense to use the sources as reflected in the uncertainty bands. The increasingly large 
databases of results for a variety of assays and chemicals can thus be used to inform the current analysis 
and interpretation and eventually can support the collection of fewer data on future chemicals as the 
relationships among chemicals and disparate end points are increasingly understood and reflected in good 
predictive models. 
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